
2024 Wisconsin and Minnesota Aquaculture Conference Legendary Waters Resort and Casino Red Cliff, Wisconsin Friday, March 22<sup>nd</sup>, 2024 11:20-11:40 am

System Design and its Impact on Water Quality Management

Edward D. Aneshansley, MPS PE. EDA@eda-aquatics.com Mobile: 978-578-2589

# Aquatic Design Services, LLC.





#### **Aquaculture Projects**

### **Conservation Aquaculture**

Often have established sites and water resources. Goals include:

1. Increasing production with existing resources using more intensive technology.

2. Improve their discharge based on new restrictive regulations.

### **Commercial Aquaculture**

Often do not have sites or water sources identified. Goals include:

- 1. Consistent Production though-out the year.
- 2. Large scale production at efficient production costs.
- 3. Market Size products/processing/marketing strategy





# Planning and Design Associated with Water Quality Management

# 1. Establish a Production Plan

- -Species, Production goals
- -Bioprogram

## 2. Establish Culture System Technology

- -Flow Through System
- -Partial Reuse System

-Recirculation Aquaculture System

- **3. Calculate Water Requirements "Water Budget"** -Based on Production Plan and Tech.
- **4. Predict Effluent Water Quality** -Based on feed-load intensity





Establish a **Site Criteria List** based on the (4) stages of Planning and Design to evaluate possible site locations.

# Criteria List related to WQM should include: -Water Source Requirements -Quality/Quantity

-Discharge requirements

-Discharge Quality/Quantity -Nitrogen, Phosphorus (Conc./Mass) -Existing discharge Infrastructure







There are Three Primary areas of Water Quality Management within an aquaculture Facility.

- **1. Source** Water Quality Management (WQM).
- 2. Culture Water Quality Management (WQM)
- 3. Effluent Water Quality Management (WQM)

#### Successful Facility Design Considers all three areas.



#### **Source Water Criteria**

Goal: Avoid the need for preconditioning and treatment.

#### Source Water Parameters that are Challenging to Manage:

- -Temperature
- -Biological Contaminants
- -Dissolved Minerals/Heavy Metals.
  - -Iron, hardness.
- -Alkalinity/Hardness
- -Gas Saturations
  - -Nitrogen, Carbon Dioxide

-Pretreatment of Source Water is continuous and critical.





### Effluent Water Criteria Goal: Avoid sites with restrictive effluent permits

## Effluent Restriction that are challenging to Manage:

- -Total Nitrogen
- -Total Phosphorus
- -BOD
- -Suspended Solids
- -Biological disinfection
- -Fish Exclusion





Culture Systems manage the water quality that the fish are exposed to.

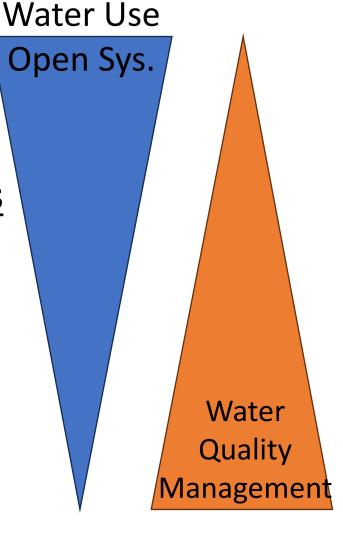
Respiration and Metabolism has major impacts on the chemistry of the water.



The WQM requirements for tend to increase as the system become more intense.

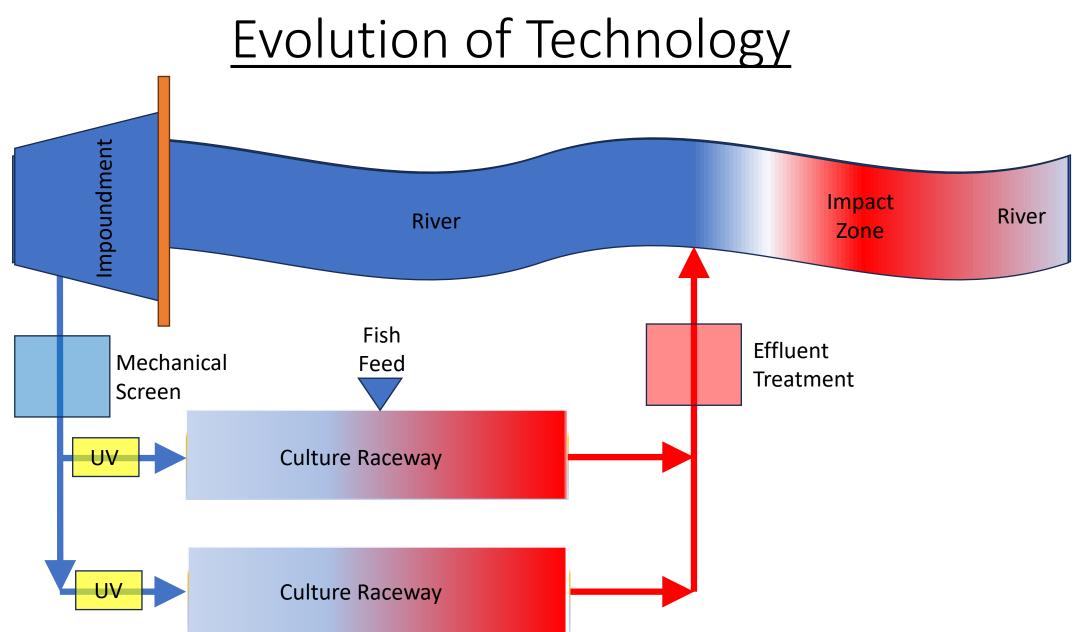
- -Higher fish densities and feed loads
- -Higher Recirculation Rates





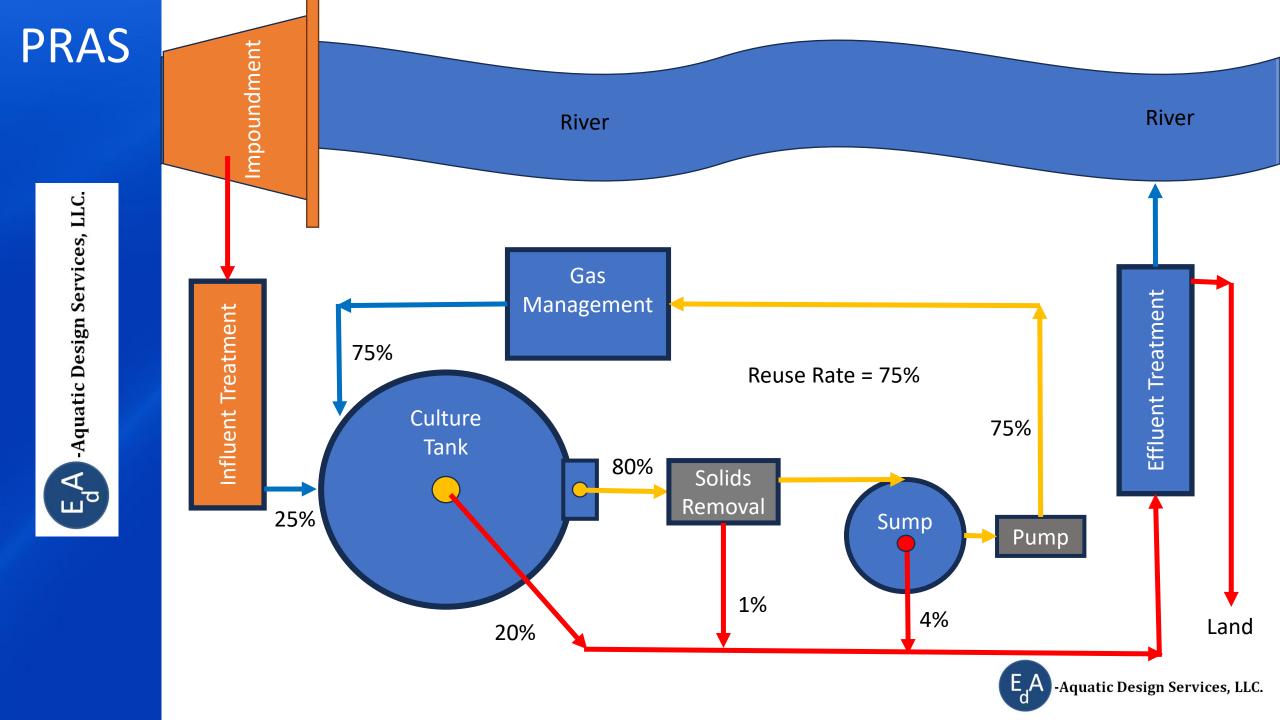

# **Culture System Design Considerations**

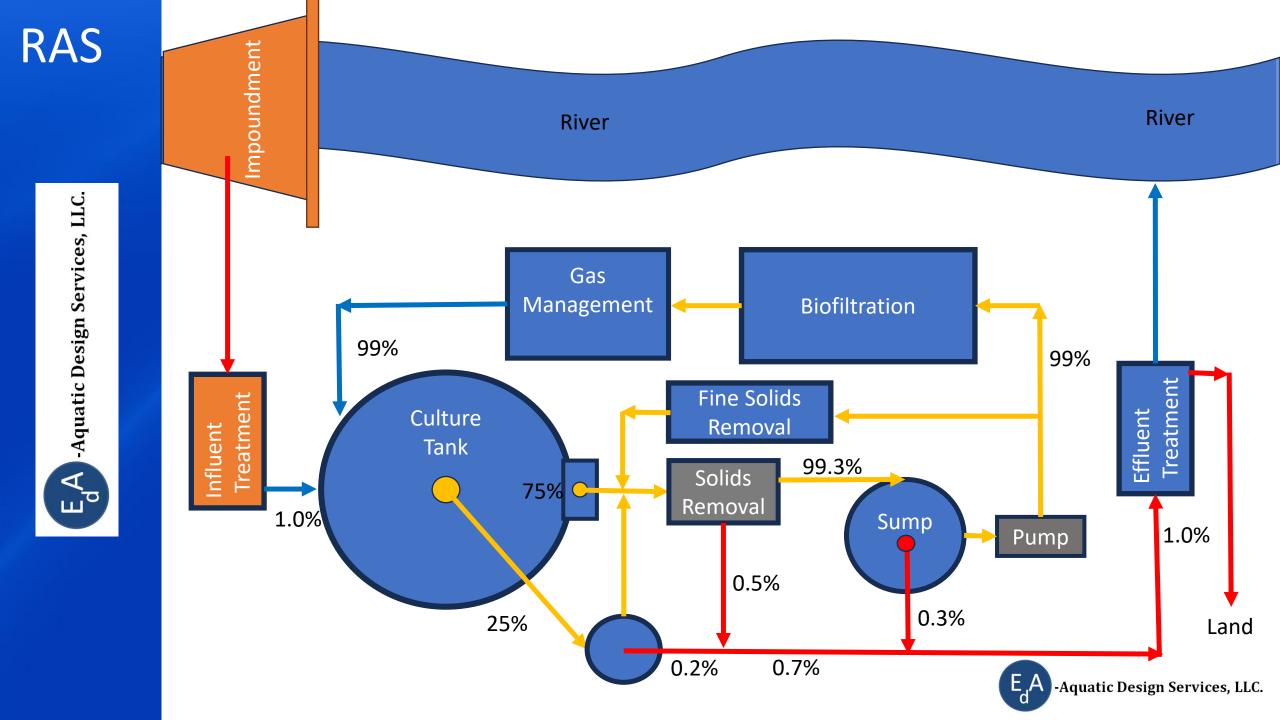
- FTS <u>Flow Through Systems</u> -HRT = 1 Hour
- PRAS <u>Partial Reuse Aquaculture Systems</u> -HRT = 10 Hours
- RAS <u>Recirculation Aquaculture Systems</u> -HRT = 100 hours


ZDS- <u>Zero Discharge System</u> -HRT= NA

HRT-Hydraulic Retention Time










Edd -Aquatic Design Services, LLC.











| Custom Matuia                             | (Units)             | REUSE RATE (% Flow that is Recircultated (Reused)) |                             |                           |       |       |       |       |       |  |
|-------------------------------------------|---------------------|----------------------------------------------------|-----------------------------|---------------------------|-------|-------|-------|-------|-------|--|
| System Metric                             |                     | 0%                                                 | 50%                         | 75%                       | 90%   | 96%   | 99.0% | 99.6% | 100%  |  |
| Total System Culture Vol.                 | m3                  | 1000                                               | 1000                        | 1000                      | 1000  | 1000  | 1000  | 1000  | 1000  |  |
| Density                                   | kg/m3               | 50                                                 | 50                          | 50                        | 50    | 50    | 50    | 50    | 50    |  |
| Feeding Rate                              | % BM/day            | 0.80%                                              | 0.80%                       | 0.80%                     | 0.80% | 0.80% | 0.80% | 0.80% | 0.80% |  |
| Feed Load                                 | kg feed/m3 CV - day | 0.40                                               | 0.40                        | 0.40                      | 0.40  | 0.40  | 0.40  | 0.40  | 0.40  |  |
| Hydraulic Retention time                  | min                 | 30                                                 | 30                          | 30                        | 30    | 30    | 30    | 30    | 30    |  |
| Total Flow Rate                           | m3/hr               | 2000                                               | 2000                        | 2000                      | 2000  | 2000  | 2000  | 2000  | 2000  |  |
| Recirculated Flow                         | m3/hr               | 0                                                  | 1000                        | 1500                      | 1800  | 1920  | 1980  | 1992  | 2000  |  |
| Makup Flow                                | m3/hr               | 2000                                               | 1000                        | 500                       | 200   | 80    | 20    | 8     | 0     |  |
| Makup Flow (HRT)                          | Hours               | 0.5                                                | 1.0                         | 2.0                       | 5.0   | 12.5  | 50    | 125   | NA    |  |
| Makup Flow                                | % CV/day            | 4800%                                              | 2400%                       | 1200%                     | 480%  | 192%  | 48%   | 19%   | 0%    |  |
| Makup Flow                                | l/kg feed           | 120000                                             | 60000                       | 30000                     | 12000 | 4800  | 1200  | 480   | 0     |  |
| BM = Fish Biomass CV = Culture Volume FTS |                     |                                                    | PRAS                        |                           |       | RAS Z |       |       | ZDS   |  |
|                                           |                     |                                                    |                             |                           |       |       |       |       |       |  |
|                                           |                     |                                                    |                             | Oxygen and CO2 Management |       |       |       |       |       |  |
|                                           |                     |                                                    |                             |                           |       |       |       |       |       |  |
| Total FlowF <sub>(t)</sub>                |                     |                                                    | Suspended Solids Management |                           |       |       |       |       |       |  |
| Makeup FlowF <sub>(m)</sub>               |                     |                                                    |                             |                           |       |       |       |       |       |  |
| (m)                                       |                     |                                                    |                             |                           |       |       |       |       |       |  |
| Recirculated FlowF <sub>(r)</sub>         |                     |                                                    |                             | Biofiltration Management  |       |       |       |       |       |  |

Reuse Rate (%).....R

$$F_{(t)} = F_{(r)} + F_{(m)}$$
  $R = \frac{F_r}{F_t} * 100$ 

Dissolved Solids Denitrif. Π E<sub>d</sub>A -Aquatic Design Services, LLC.

| Feed Load Calculation |                      |                                    |           | CV = Culture Volume |                    |      |      |      |  |
|-----------------------|----------------------|------------------------------------|-----------|---------------------|--------------------|------|------|------|--|
| Inputs                |                      |                                    |           |                     | BM = Bion          | nass |      |      |  |
| Density               | 20                   | 20 kg/m3<br>1.50% Biomass (BM)/day |           |                     |                    |      |      |      |  |
| Feeding Rate          | 1.50%                |                                    |           |                     |                    |      |      |      |  |
| Calculation           |                      |                                    |           |                     |                    |      |      |      |  |
| Feed Load             | 0.30                 | kg feed /r                         | n3 CV-day | ì                   | ]                  |      |      |      |  |
|                       |                      | Feed I                             | -         |                     | <sup>3</sup> -day) |      |      |      |  |
| Feeding Rate          | Fish Density (kg/m3) |                                    |           |                     |                    |      |      |      |  |
| (% BM/day)            | 10                   | 20                                 | 30        | 40                  | 50                 | 60   | 70   | 80   |  |
| 0.10%                 | 0.01                 | 0.02                               | 0.03      | 0.04                | 0.05               | 0.06 | 0.07 | 0.08 |  |
| 0.20%                 | 0.02                 | 0.04                               | 0.06      | 0.08                | 0.1                | 0.12 | 0.14 | 0.16 |  |
| 0.30%                 | 0.03                 | 0.06                               | 0.09      | 0.12                | 0.15               | 0.18 | 0.21 | 0.24 |  |
| 0.40%                 | 0.04                 | 0.08                               | 0.12      | 0.16                | 0.2                | 0.24 | 0.28 | 0.32 |  |
| 0.50%                 | 0.05                 | 0.1                                | 0.15      | 0.2                 | 0.25               | 0.3  | 0.35 | 0.4  |  |
| 0.60%                 | 0.06                 | 0.12                               | 0.18      | 0.24                | 0.3                | 0.36 | 0.42 | 0.48 |  |
| 0.70%                 | 0.07                 | 0.14                               | 0.21      | 0.28                | 0.35               | 0.42 | 0.49 | 0.56 |  |
| 0.80%                 | 0.08                 | 0.16                               | 0.24      | 0.32                | 0.4                | 0.48 | 0.56 | 0.64 |  |
| 0.90%                 | 0.09                 | 0.18                               | 0.27      | 0.36                | 0.45               | 0.54 | 0.63 | 0.72 |  |
| 1.00%                 | 0.10                 | 0.20                               | 0.30      | 0.40                | 0.50               | 0.60 | 0.70 | 0.80 |  |
| 1.10%                 | 0.11                 | 0.22                               | 0.33      | 0.44                | 0.55               | 0.66 | 0.77 | 0.88 |  |
| 1.20%                 | 0.12                 | 0.24                               | 0.36      | 0.48                | 0.6                | 0.72 | 0.84 | 0.96 |  |
| 1.30%                 | 0.13                 | 0.26                               | 0.39      | 0.52                | 0.65               | 0.78 | 0.91 | 1.04 |  |
| 1.40%                 | 0.14                 | 0.28                               | 0.42      | 0.56                | 0.7                | 0.84 | 0.98 | 1.12 |  |
| 1.50%                 | 0.15                 | 0.3                                | 0.45      | 0.6                 | 0.75               | 0.9  | 1.05 | 1.2  |  |
| 1.60%                 | 0.16                 | 0.32                               | 0.48      | 0.64                | 0.8                | 0.96 | 1.12 | 1.28 |  |
| 1.70%                 | 0.17                 | 0.34                               | 0.51      | 0.68                | 0.85               | 1.02 | 1.19 | 1.36 |  |
| 1.80%                 | 0.18                 | 0.36                               | 0.54      | 0.72                | 0.9                | 1.08 | 1.26 | 1.44 |  |
| 1.90%                 | 0.19                 | 0.38                               | 0.57      | 0.76                | 0.95               | 1.14 | 1.33 | 1.52 |  |
| 2.00%                 | 0.20                 | 0.40                               | 0.60      | 0.80                | 1.00               | 1.20 | 1.40 | 1.60 |  |

Key Metrics Associated with Production Intensity

#### Feed Load:

KG Feed per Cubic Meter of Culture Volume per day

### **Key Components that Impact Culture WQM**

- Culture Tank Design
- Automatic feeding equipment
- Fish grading and movement
- Monitoring and Control Systems (SCADA)

# Key Building Coordination that Impact WQM

- HVAC Specifications
  - Building Temperature
  - Humidity Control
  - Air Exchanges





### Managing your Water Quality Management

- 1. Starts with Site Selection!
- 2. Is impacted by your bioplan and production intensity.
- 3. Has three distinct areas that require distinct tech.
- 4. Is impacted by the culture components that you choose.
- 5. Needs to coordinate with building design.









-Aquatic Design Services, LLC.