Modeling Walleye Production & Profitability: A Case Study for walleye production in RAS

Tyler Firkus¹, Bryce Wilberding², Emma Hauser¹

1.

Northern Aquaculture Demonstration Facility 2.

Stanford | **Doerr** School of Sustainability

The Case for US Aquaculture

70-85% of US Seafood is Imported

#1 Importer of Seafood

National Security, Food Security, and Economic Security Concerns

Headwinds Facing the US RAS Aquaculture Industry

Experience Gap
Difficult to find knowledgeable labor
Site selection difficulties
Emerging Technologies

Financial Barriers

 High up-front capital costs
 Require large scale operations
 High operating expenses

The Case for US Aquaculture

Importer of Seafood

National Security, Food Security, and Economic Security Concerns

Options for the US RAS Aquaculture Industry

Either invest a tremendous amount of money to build a large scale operation and benefit from economies of scale Or focus on small scale with a niche species or niche market where a high price can be fetched, and you are not competing with cheaper means of production

Walleye Recirculating Aquaculture

Growing a Midwest staple – sustainably, year-round, and without depleting wild supply

Why Walleye?

- Strong regional demand at a premium price/lb
- Limited & inconsistent commercial supply
- UWSP NADF has 15 years of experience raising walleye
- Emerging species in the upper Midwest
 - Rapid growth in walleye-focused facilities

FOR INTENSIVE PRODUCTION

Walleye Recirculating Aquaculture

Growing a Midwest staple – sustainably, year-round, and without depleting wild supply

Why Model Operating Breakeven?

- Demonstrate the path to profitability and create a public extension tool for walleye farmers
- It's challenging to find information on true operation costs
- Bioplanning information is not readily available
- Fish farmers often do not have financial backgrounds

Objective

Develop a model to estimate operating costs and breakeven prices to be used as a tool by prospective walleye farmers

Allow farmers to understand scope of potential costs Allow farmers to input own values and estimate prices they will need to fetch to breakeven

Use values from NADF as a case study and validation of the model

Model Options

Model allows user to change most inputs

- Number of fish raised
- Initial and market size
- Whole fish or processed fillet final product
- Rearing density
- Mortality rates
- Operating and capital expenses
- Labor costs
- Final price

Provides an exhaustive list of costs and ballpark default values to guide users

Key Assumptions

Facility focusing on purchasing feed-trained fingerlings (1g) and growing them to food market-size walleye (~.5kg) **1** cohort of fish raised per cycle Cycle from fingerling to market size takes ~440 days Assuming the facility has the size and capacity of the Northern **Aquaculture Demonstration Facility** Using energy, O2, and other equipment cost estimates Including capacity to raise <u>34,330 market size walleye</u>

Ļ

Operating Breakeven Price

A tool for farmers to conceptualize their costs and find a market price

1. Define Input Assumptions

Operating Assumptions	Input	Units
Number of Fingerlings Purchased	1 34,330	fingerlings
Initial Fingerling Size	1.0	grams
Initial Fingerling Cost	2.00	\$/gram
Transfer Mortality Rate	2.0%	
Number of Fingerlings Stocked	33,643	fingerlings
Growout Mortality Rate	2 4.0%	
Final Market Size	478.04	grams
Fillet Yield	47.0%	
Fillet Size	0.25	lbs
Fillet Size	3.96	oz
Density at Harvest	70.0	kg/m3
Minimum Total Tank Size at Harvest	3 220.7	m3
Minimum Total Tank Size at Harvest	58,312	gal

Initial Outputs

Days per Cycle Feed Conversion Ratio

Ending # of Walleye at Harvest Ending Biomass at Harvest Ending Biomass at Harvest

	1.0	grams
	2.00	\$/gram
	2.0%]
	33,643	fingerlings
2	4.0%	
	478.04	grams
	47.0%	
	0.25	lbs
	3.96	oz
	70.0	kg/m3
3	220.7	m3
	58,312	gal
		Units
	400	days
4	1.33	kg feed/kg weight gain
	32,323	Fish
	15,452	kg

34.065

lbs

Entire model is set up in a similar format, with farmers able to adjust yellow cells based on their operation

Example uses 34,330 one-gram fingerlings at \$2/fingerling

4% mortality in grow-out phase is standard, with (2) growth to ~1lb market weight

Required tank size feeds into a separate CapEx tab, 3 helping the farmer understand initial investment

2. Model Walleye Growth in RAS Conditions

2. Model Walleye Growth in RAS Conditions

3. Define COGS & OpEx

4. Minimum Sale Price at Operating Breakeven (Whole Fish)

4. Minimum Sale Price at Operating Breakeven (Processed Fillet per pound)

Conclusions

If the Northern Aquaculture Demonstration Facility were converted to a walleye growout operation, we would not be able to compete with Canadian wild-caught frozen walleye fillets 34,330 fish is too small of an operation Costs associated with our research facility are likely not very efficient compared to a dedicated growout facility Possible that we could command a premium price by offering a "fresh, never frozen" alternative to frozen wild-caught fillets

Conclusions

If the Northern Aquaculture Demonstration Facility were converted to a walleye growout operation, we would not be able to compete with Canadian wild-caught frozen walleye fillets 34,330 fish is too small of an operation Costs associated with our research facility are likely not very efficient compared to a dedicated growout facility <u>Possible that we could command a premium price by offering</u> a "fresh, never frozen" alternative to frozen wild-caught fillets

Operating Income breakeven scale at \$7/ whole unprocessed walleye

Operating Income breakeven scale at \$22/lb of filleted walleye

Conclusions

These types of analyses are critical for prospective farmers
This tool is intended to make business planning much easier and more accessible to walleye farmers
Hopefully facilitates informed operation development
Can easily be modified to estimate any species

For a copy of the model, email: tyfirkus@uwsp.edu

Northern Aquaculture Demonstration Facility

School of Sustainability