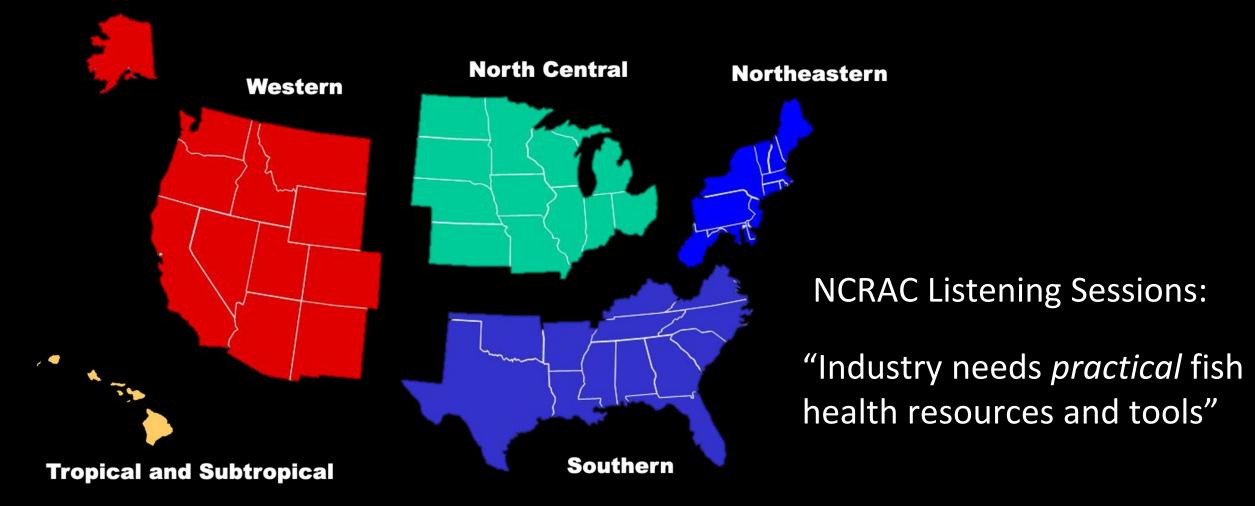
Best management practices for the health of your farmed fish: a new tool



Laurel Sacco¹, Ethan Haefner¹, Nick Phelps¹, Tom Loch², Myron Kebus², Matt Smith³

North Central Regional Aquaculture Center

Overall Goal

Address industry-identified fish health needs in the NCR by:

- 1. Building long-term producer and professional fish health capacity
- 2. Develop immediately deployable innovative solutions to production limiting diseases

What are producers saying?

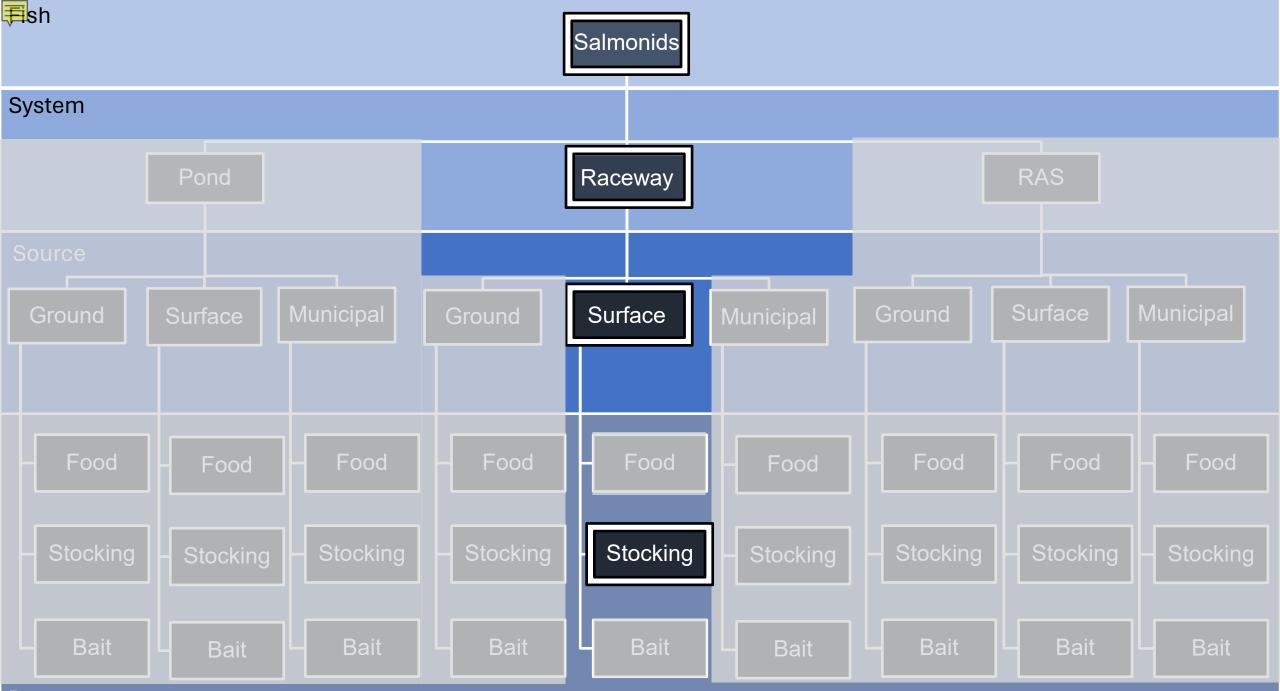
Fish Health Navigator

Identify fish health concerns and provide resources to inform best management practices for a range of NC farm conditions

Major Tool Elements

Start	BMPs	Output
Initial Questions	Guiding questions to identify where	Why it's important to address
	BMPs are most	
	needed	Resources to
		implement BMPs

Initial Questions


Fish

Salmonids | Percids | Baitfish | Centrarchids | Catfish | Moronids | Tilapia | Koi/Goldfish | Shrimp/Prawns

SystemPond | Raceway | Recirculating AquacultureSystem (RAS)

Water Source Ground | Surface | Municipal

Purpose Food | Stocking | Bait

Purpose

Fish

Salmo	onids	Р			Cent		ds	Ca					5	Т		1	ľ		h	Koi/		;h		p/Prav	vns
System																									
Pond Raceway	RAS	Pond	Raceway	RAS	Pond	Raceway	RAS	Pond	Raceway	RAS	Pond	Raceway	RAS	Pond	Raceway	RAS	Pond	Raceway	RAS	Pond	Raceway	RAS	Pond	Raceway	RAS
Ground Ground Surface Surface	Ground Surface	Ground Surface	Ground	Ground	Ground		Ground														Ground			Ground	Ground
Municipal Municipal	Municipal	Municipal			Municipal																	Municipal	Municipal		Municipal

Source

...and so on

About

Fish Health Navigator

A resource to guide best management practices in aquaculture

Start

Funding provided by the North Central Regional Aquaculture Center

Ţ

Select the type of fish being raised on your farm:

- \checkmark Salmonids
- Percids
- 🖵 Bait
- **Centrarchids**
- Moronids

- **Catfish**
- 🖵 Tilapia
- ☐ Koi/Goldfish
- □ Shrimp & Prawns

Select your farm's aquaculture system:

Pond

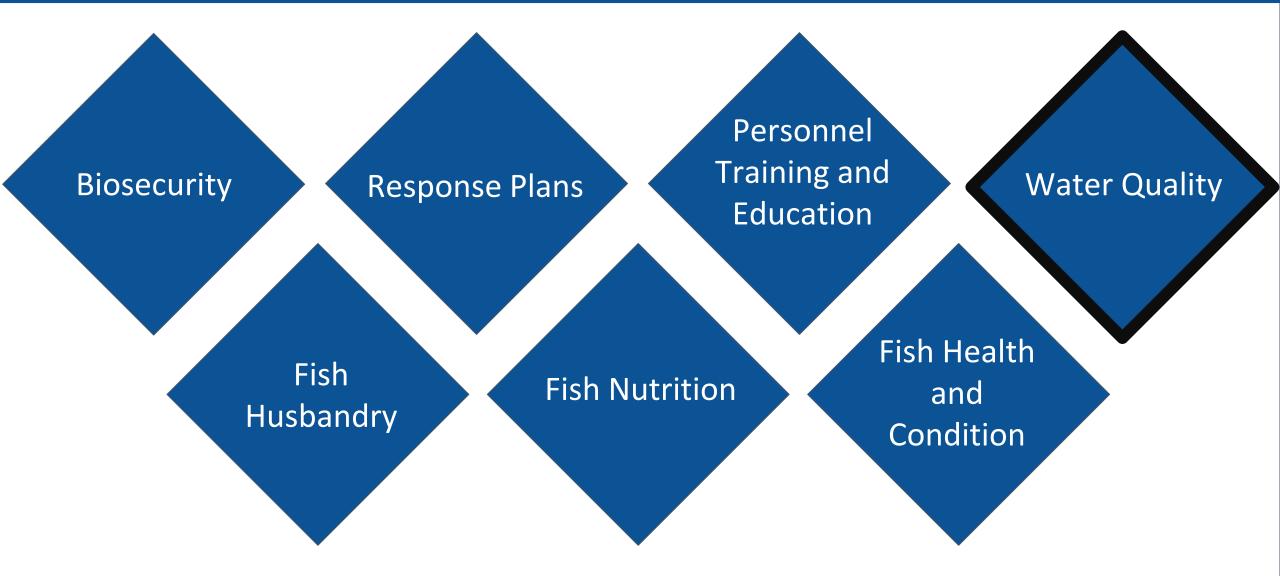
✓ Raceways

Select your farm's water source:

Ground Ground

\checkmark Surface

U Municipal


Select the purpose for fish raised on your farm:

Give Food

\checkmark Stocking

🖵 Bait

Select a Fish Health Topic

Select which water quality metrics are tested on your farm:

- \checkmark Dissolved Oxygen
- √ Nitrite
- √ Ammonia

✓ Temperature

UWater Hardness

Alkalinity

√ pH

Is incoming water treated for microbes?

√ Yes

NoNot sure

Water Quality

Identified fish health concerns for your farm:

Daily water quality monitoring does not include tests for water hardness and alkalinity

Recommended BMPs to address identified fish health concerns:

Measure water hardness daily: Insufficient hardness may result in osmoregulatory stress for fish, disrupting their electrolyte balance and compromising their ability to regulate internal fluids. Conversely, excessive water hardness can pose challenges for fish by impeding nutrient uptake and hindering metabolic processes. **Expand explanation**

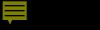
Measure alkalinity daily: Acidic conditions resulting from low alkalinity can impair fish respiration, hinder nutrient absorption, and weaken immune responses, increasing susceptibility to diseases and other health issues. Conversely, excessively high alkalinity levels may also disrupt fish physiology and impair metabolic functions. **Expand explanation**

<u>Identified fish health con</u> Daily water quality moni	processes. High levels of water hardness can also contribute to the accumulation of mineral deposits in aquaculture infrastructure, potentially impacting water quality and system performance.							
Recommended BMPs to a								
Measure water hardness	corrective actions to maintain stable conditions for your fish population. Adjusting water hardness levels may involve supplemental treatments such as the addition of mineral supplements or the use							
fish, disrupting their elec	of water softening agents, depending on the specific requirements of your fish species and the characteristics of your water source.							
fluids. Conversely, excess								
uptake and hindering metabolic processes. Expand explanation								

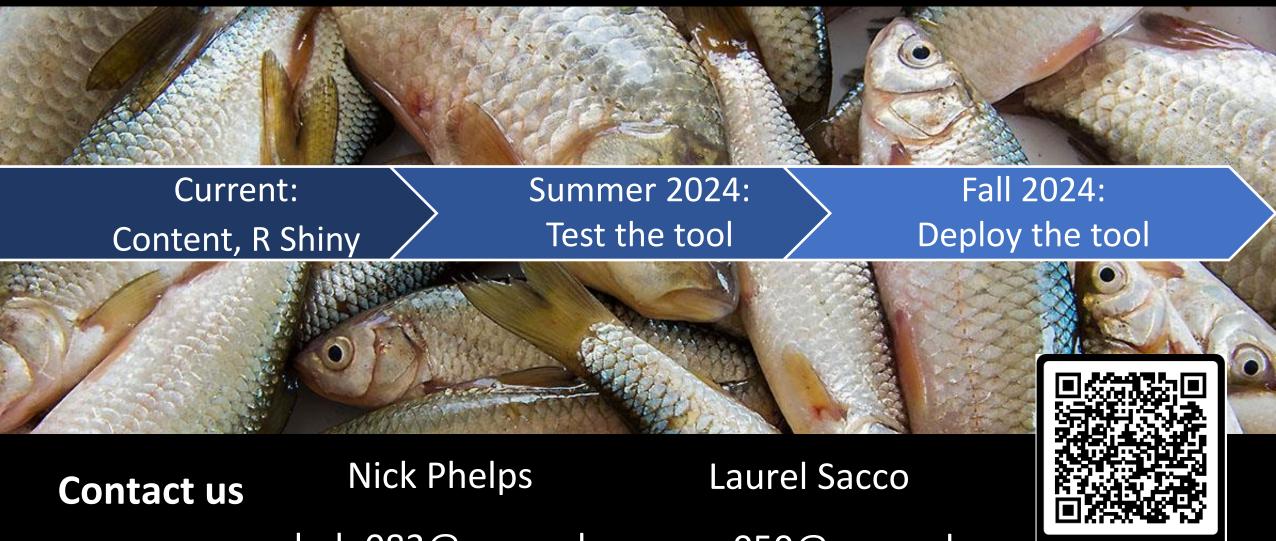
Measure alkalinity daily: Acidic conditions resulting from low alkalinity can impair fish respiration, hinder nutrient absorption, and weaken immune responses, increasing susceptibility to diseases and other health issues. Conversely, excessively high alkalinity levels may also disrupt fish physiology and impair metabolic functions. **Expand explanation**

Water Quality

SRAC 0464: Interactions of pH, Carbon Dioxide, Alkalinity and Hardness in Fish Ponds *Breaks down alkalinity, hardness, and pH and their importance to aquaculture and organism health*


https://srac.tamu.edu/categories/view/25

SRAC 4606: Interpretation of Water Analysis Reports for Fish Culture


Page 3-8: Overview of water quality parameters and their interpretation as well as the importance of water quality as a limiting factor in aquaculture https://srac.tamu.edu/categories/view/25

An Overview of Aquaponic Systems: Aquaculture Components: Page 12-13

Overview of equipment (including effectiveness and cost (tables 10 &11)) for environmental system monitoring and water quality testing https://www.ncrac.org/files/inline-files/aquaculture_components.pdf

Next Steps

phelp083@umn.edu sacco050@umn.edu

SCAN ME