

Wisconsin's K-12 Energy Education Program (KEEP) College of Natural Resources **University of Wisconsin - Stevens Point**

Modeling the movement of electrons through a solar cell

Esimated Time: 30 minutes Age: 4th-12th grade

PARTICIPANTS SHOULD GAIN AN UNDERSTANDING OF

• How electrons move through a solar circuit to produce electricity

SUPPLIES

- Plastic cones or other space markers
- Rope
- Three space labels:
 - "+" and "Positive charge"
 - "-" and "Negative charge"
 - "P-N Junction"
- Pictures of solar panels, sun, cloud, appliances

ADVANCE SET-UP

- Mark off a portion of the ground with cones into two large rectangular areas, with enough space to hold all students
- Place the labels inside the rectangles
- Use the rope to make a path around the area, representing an electrical circuit

Modeling the movement of electrons through a solar cell and circuit

INTRODUCTION: Electricity as a Form of Energy (10 min)

- Ask students what we use electricity for
 - Examples: lighting, tv, phone get at least one with rechargeable batteries
 - Hint describe the evidences of energy: heat, light, sound, and movement
- Ask students if they know how we get our electricity
 - 37% Natural Gas
 - 36% Coal
 - 16% Nuclear
 - 11% Renewables (Aug 2023 - WI Energy Profile, www.eia.gov)
- Types of energy
 - Renewable- energy from a source that is not depleted when used/will not run out
 - Non-renewable- energy from a source that is not replaced as fast as consumed and we only have a limited amount
 - Categorize types they brainstormed as renewable or non-renewable
- Why would people want to use renewable energy?
 - Save money
 - School example:
 - Average cost of electricity for a school could be \$100,000/year
 - Even 1% of that is \$1,000
 - Savings could create room in the budget for other items
 - Help the environment
 - Less habitat destruction (from mining)
 - Less air pollution
 - Energy stability (we will not run out)
- Ask if and where they have seen solar panels in their local community, while travelling, or show photos
- Ask students if anyone knows how solar panels produce electricity
 - In a coal or natural gas power plant:
 - Burning these fuels near water creates steam
 - Steam spins a turbine, which spins a generator
 - The spinning moves tiny particles called electrons along wires to produce electricity
 - In a solar panel:
 - Solar energy is changed to electrical energy
 - Electrons are excited by the sunlight and move along the wire

Modeling the movement of electrons through a solar cell and circuit

ACTIVITY: Model electrons in a solar cell (15 min)

- Students will be playing the role of electrons in a solar cell and an electrical circuit.
- Show the students the area representing the solar panel:
 - The Positive layer
 - The Negative layer
 - The Positive-Negative (p-n junction)
- Tell students the junction acts like a one-way door through which electrons can pass from the positive layer into the negative layer, **but not the other way!**
- Student Roles:
 - Electrons standing in the positive layer
 - Electrons standing in the negative layer
 - Optional: add barrier of students along the p-n junction who prevent electrons from passing the wrong way
 - The Sun Stand facing the negative layer
 - The Cloud Stand next to the sun
 - Appliances Stand next to the rope (space out)
 - Remaining students play electrons evenly spaced along the rope (electrical wire/circuit)
- When everyone is positioned, start the simulation:
 - The Sun "shines" on the solar cell
 - Electrons in the solar cell begin moving and wiggling around
 - Walk and wiggle until they reach the edge of their layer, then turn and walk in a different direction until they reach the next edge
 - Electrons in the positive layer eventually move, one by one, into the negative layer.
 - The p-n junction allows electrons to pass into the negative layer but prevents wiggly electrons in the negative layer from moving back (with optional barrier students)
 - $\circ\,$ The only place for the electrons in the negative layer to go is into the wire
 - Have one electron enter the wire
 - Electron students along the wire move forward along the wire back toward the positive layer.

Modeling the movement of electrons through a solar cel and circuitl

ACTIVITY CONTINUED: Model electrons in a solar cell (15 min)

- Appliances turn on when electrons are moving.
 - Encourage students to do the motions/sounds of the devices!
 - Appliances stay on as long as the sun is shining
 - Electrons give appliances a high-five as they pass to simulate energy transfer
- When an electron enters the wire, an electron at the other end of the wire can step into the postive layer
- After an electron enters the positive layer from the wire, the student should move and wiggle until it is their turn to enter the negative layer
- With practice, the electrons should cyclically move from the positive layer, into the negative layer, through the wire, and back to the positive layer, completing the circuit
- Change the flow of the electrons by having the sun "set" or get blocked by the cloud
- Ask students what would happen to the electron flow (slows or stops)

DISCUSSION (5 min)

- Reflect on why solar panels are a renewable source of energy:
 - Will we ever run out of the sun?
 - Are there any waste products of solar energy?
- Describe potential drawbacks of solar PV:
 - Solar energy is not always available (such as at night)
 - It is not consistently sunny everywhere
 - It might be difficult to get solar panels
 - Requires large initial investment

WRAP-UP AND EXTENTION IDEAS

- Have students describe how a solar cell produces electricity using introduced vocabulary
- Using objects with solar cells (calculators, toys, outdoor lights), students can describe the energy transfer from solar to electric to kinetic or electromagnetic energy (light)
- Visit a location with solar panels
- Check out either the Solar Tilt Kit or the Solar Load Kit for FREE from KEEP:
 - Connect a solar panel to a multimeter to measure how much electricity is produced
 - Investigate the effect that tilt has on solar electricity production
 - Measure the effect of shading on electricity production
 - Measure how much solar energy is needed to run small appliances
- Renewable energy lessons and activities from KEEP

CHARGE POSITIVE

NEGATIVE CHARGE

JUNCTION Z d

Many Solar Panels Make a Solar Array

