

Watt's Your Appliance?

Investigating and Comparing Wattages of Common Household Appliances

Estimated Time: 45 minutes Age: 4th-12th grade

STUDENTS SHOULD GAIN AN UNDERSTANDING OF:

- The difference between power and energy
- Average wattages of common household appliances
- Actions they can take to reduce their energy consumption

SUPPLIES

- Power vs Energy Images
- Watt's Your Appliance Cards, cut in half and laminated
- If possible, watt meter (check out from KEEP)
- Answer Key

INTRODUCTION

- Background vocabulary for electricity:
 - O Power How fast energy is used or transmitted
 - O Watt Unit of power
 - O Energy How much electricity has been generated, stored, or used over time
 - O Kilowatt-hour (kWh) 1,000 watts consumed over one hour
- Hold up (or show pictures of) two electrical appliances from classroom or home and have students predict which one uses more energy in a day.
- Go over the power vs energy concept pages

Watt's Your Appliance?

Investigating and Comparing Wattages of Common Household Appliances

Estimated Time: 45 minutes Age: 4th-12th grade

ACTIVITY

- Hand out appliance cards to each student. Explain that these represent an average size appliance, and that they should think about the power used, not the energy consumed over time.
- Instruct them to compare their appliance with others to predict which one uses more or less energy. The goal is to have them order themselves from least to greatest wattage.
- While they are working, set out the wattage cards on the floor, a table, or tape to a wall.
- Have students work as a whole class to match the appliances with their average wattage.
- Ask students how we could find out what the wattage is, besides looking at the answer key or asking Google. Options include using a watt meter (show if possible) or looking at the wattage on the appliance.
- If possible, demonstrate using watt meter on two appliances and then have students discuss changes that could be made to the order of the appliances.
- Have students discuss why they made any changes or why they think some are higher or lower wattages.
- Go over correct wattages for each appliance with discussion questions below.

DISCUSSION

- Which appliances have the greatest/least wattage? Why?
 - O Electric production of heat needs a lot of power
 - O Motors that spin do not need a lot of power
- How does heat correlate with the amount of electricity used?

Watt's Your Appliance?

Investigating and Comparing Wattages of Common Household Appliances

Estimated Time: 45 minutes
Age: 4th-12th grade

DISCUSSION (Continued)

- Compare the following appliances and discuss why each uses more/less:
 - Ceiling fan vs Air conditioning (motor spinning vs taking heat & humidity out of air)
 - O Cold water wash vs Hot water wash (same washing machine, heat booster)
 - O Space heater vs Blanket/warm clothing (no electricity required)
- Predict and then calculate which uses the most energy over one year (see table on next page).
- Refrigerator > Aquarium Pump & Filter > Microwave
- Discuss how time of use affects energy consumption
 - O We may have an appliance with low wattage but if it is running all day, everyday, the energy use is going to be high
 - O Low wattage appliances sometimes are "on" all the time. We call these "vampire appliances" because they constantly "suck" energy.

WRAP-UP & EXTENSIONS

- Use the average Wisconsin electric rate of \$0.17 per kWh to calculate how much each appliance would cost to run in a year.
- Have students discuss ways they can conserve energy at home and at school.
- Investigate "vampire appliances" and how they affect energy usage.
- Calculate energy usage for one appliance for a year, all appliances from one room in house, or appliances in the classroom.
- Brainstorm ways that kids can teach others how to take action to save energy. Examples include presentations, poster, quizlets, Kahoot, class book, infographic, debate, baord game, or a classroom/at home scavenger hunt.
- KEEP Lesson: At Watt Rate
- KEEP Kit for checkout: Energy Audit Kit

		ENER	IGY USE OF AF	ENERGY USE OF APPLIANCES IN ONE YEAR	
APPLIANCE	POWER	HOURS PER DAY	DAYS PER YEAR	CALCULATION	ENERGY PER YEAR
Aquarium Pump & Filter	24 W	24	365	24 W + 1000 W/kW = 0.024 kW 0.024 kW × 24 hrs/day × 365 days/year =	210 kWh per year
Refrigerator	180 W	24	365	180 W + 1000 W/kW = .18 kW 0.18 kW × 24 hrs/day × 365 days/year =	1,576.8 kWh per year
Microwave	1200 W	.25	365	1200 W + 1000 W/kW = 1.2 kW 1.2 kW x .25 hrs/day x 365 days/year =	109.5 kWh per year
Your choice appliance				W ÷ 1000 W/kW = kW hrs/day x days/year =	

Power

SN

Energy

Power is how fast energy is used or transmitted.

Watts are a measure of power.

A kilowatt-hour (kWh)

is a measure of energy (not power).

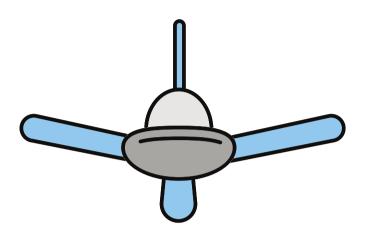
Energy is how much electricity has been generated, stored, or consumed over time.

Sprinter uses a lot of power

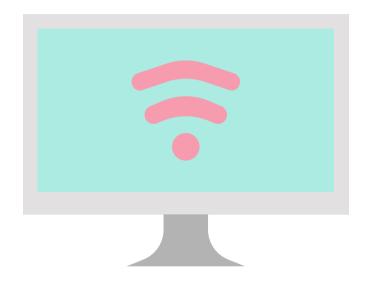
Distance runner uses less power

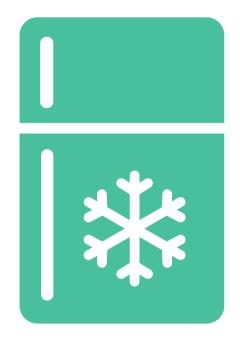
They may use the same amount of energy over time

Phone Charger

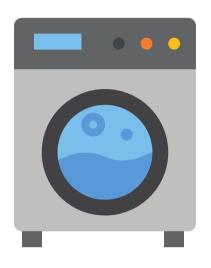

Alarm Clock

Aquarium Pump and Filter


Ceiling Fan

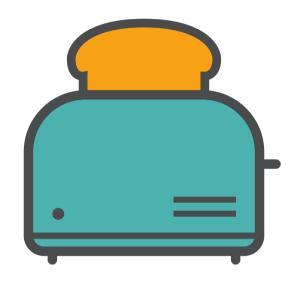

Xbox

LED Television


Refrigerator

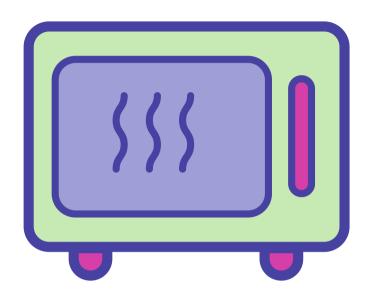
Slow Cooker

Washing Machine



Cold water wash

Coffee Maker



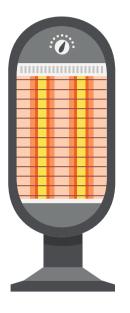
Toaster

1,200 watts

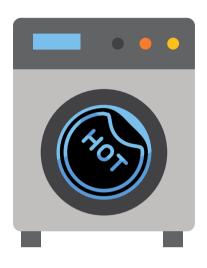
Microwave

1,200 watts

Blow Dryer

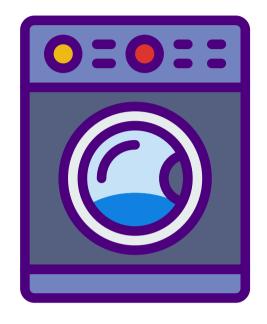

1,200 watts

Vacuum Cleaner


1,400 watts

Space Heater

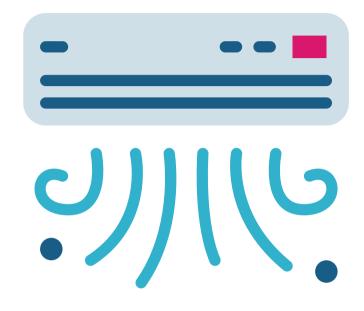
1,500 watts


Washing Machine

Hot water wash

2,500 watts

Electric Clothes Dryer

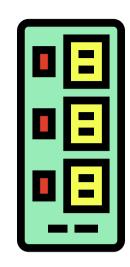

3,000 watts

Electric Oven

3,000 watts

Air Conditioner

3,500 watts


Water Heater

4,000 watts

Watts Your Appliance - Answer Key

Phone Charger	5 watts
Alarm Clock	10 watts
Aquarium Pump and Filter	24 watts
Ceiling Fan	75 watts
XPox	100 watts
LED Television	100 watts
Refrigerator	180 watts
Slow Cooker	200 watts
Washing Machine (cold water)	500 watts
Coffee Maker	800 watts
Toaster	1.200 watts
Microwave	1,200 watts
Blow Dryer	1.200 watts
Vacuum Cleaner	1,400 watts
Space Heater	1,500 watts
Washing Machine (hot water)	2.500 watts
Electric Clothes Dryer	3.000 watts
Electric Oven	3.000 watts
Air Conditioner	3.500 watts
Water Heater	4.000 watts

