# MOLECULAR BIOLOGY SYLLABUS

Biol 320 Sect 1 – Spring 2018

Instructor: Dr. Diane Caporale (Dr. C) Email: dcaporal@uwsp.edu

Office: 437 CNR Building D2L: Biol 320

or by appointment

## **Required Text:**

1) Cox, M.M. et al. 2015. *Molecular Biology: Principles & Practice*, 2st ed. For rent in bookstore.

<u>Required lined paper</u>: Purchase lined paper for note taking and lab journaling. Another option is to purchase a small lab notebook with lines.

**<u>Lab Manual</u>**: Lab manuals will be provided for you and distributed in lab in the first week. They will be in a 3-ring binder, for the convenience of adding your own notepaper.

**Lecture Meetings:** Mon & Wed: 8:00 – 9:15 am; SCI A208

#### **Lab Meetings:**

Section 1: Wed 12:00 - 3:00 pm Sci B212

**Exam Times**: during lecture time, Check schedule for specific dates

#### **Learning Outcomes:**

<u>University Level</u>: *Investigation / Understanding the Physical World*: 1) Identify the basic taxonomy and principles of the scientific method as it pertains to the natural, physical world, 2) Infer relationships, make predictions and solving problems based on an analysis of evidence or scientific information, 3) Apply scientific concepts, quantitative techniques and methods to **solving problems** and making decisions, and 4) Describe the relevance of some aspect of the natural science to their lives and society.

<u>Biology/Biochemistry Program Level</u>: 1) Apply the scientific method, using appropriate theoretical and practical skills to design research studies, answer biological questions and/or solve problems. 2) Describe the flow of genetic information, the chromosome theory of heredity, and the relationship between genetics and evolutionary theory. 3) Evaluate and discuss contemporary social and ethical issues related to biology. 4) Apply theoretical and practical aspects of biology in a variety of laboratory and/or field experiences.

<u>Course Level</u>: 1) Compare the basic principles of inheritance in detail at the molecular, cellular and organismal levels, beyond the scope of Biol 210 (Genetics). 2) Relate DNA structure and manipulation to the function and control of genes. 3) Relate molecular techniques to discoveries in molecular biology. 4) Appraise ethical issues involved with the study of biotechnology and medicine. 5) Conduct basic molecular techniques to answer a variety of biological questions, and 6) Design molecular-based experiments using the scientific method.

<u>Grading:</u> The grading scale below is firm. There will be no borderline grades. If you attend and participate in class, keep up with your text reading each week, read lab manual **prior** to lab time, and **ask questions**, then you'll find success in this course. **Late lab reports are subject to 10% off each day late.** 

Your final letter grade is calculated as follows: out of 100 pt.

|                 | B+ = 87.5-89.4 | C+ = 77.5-79.4  | D+ = 67.5-69.4 |
|-----------------|----------------|-----------------|----------------|
| A = 92.5-100    | B = 82.5-87.4  | C = 72.5-77.4   | D = 60.0-67.4  |
| A = 89.5 - 92.4 | B- = 79.5-82.4 | C = 69.5 - 72.4 | F = < 60.0     |

There are four (4) lecture exams, which are in short answer / essay format. Exams typically do not cover the lecture before the scheduled time of each exam. Grades will be posted on D2L, as well as weekly posts, suggested studying assignments, and practice questions to help you succeed in this course. There are also 4 formal lab reports and one in-class lab assignment. Below is a table indicating the percentage point values for each item.

| Lecture Exams | 60% Total | Lab Reports & Participation                          | 40% Total        |
|---------------|-----------|------------------------------------------------------|------------------|
| 1             | 15%       | Gel Electrophoresis                                  | 5% / group of 2  |
| 1             |           | Primer Design                                        | 7% / group of 2  |
| 2             | 15%       | Detection of 3 Tick-borne Pathogens by Multiplex PCR | 12% / group of 2 |
| 3             | 15%       | Identifying genotypes within your Genome             | 12% / individual |
| 4 15%         | 15%       | Success in Laboratory Technique                      | 3% / individual  |

Attendance Policy: I strongly recommend you attend every lecture. Missing any class will put you at a distinct disadvantage when test taking. Students who must miss an exam due to religious observances or participation in university-sanctioned events should notify me within the first 3 weeks of the beginning of class, so makeup arrangements can be made. The only other valid excuses for missing an exam are: death in the family, violent illness, or accident. In such cases: (1) you must provide evidence of some kind (eg. note from health center), and (2) you must reschedule within 24 hours after the deadline.

**E-mail:** Students are expected to check their University e-mail regularly for information from the university and/or instructor. If you are using an e-mail account other than your campus account to contact me, be sure your full name is included in the message

<u>Electronic Devices:</u> Cell phones must be turned **off** and **not** displayed during class, lab or exam. No other communication or musical devices are allowed. Students needing a foreign language dictionary during exams may use one with permission from instructor.

<u>Academic Conduct:</u> You are responsible for the honest completion and representation of your work and for the respect of others' academic endeavors. Any act of cheating, plagiarism, or academic misconduct is subject to the penalties outlined in UWS Chapter 14.

For more information: http://www4.uwsp.edu/natres/nres701/plag.pdf

**Extra Help:** Come see me during scheduled office hours or make an appointment for extra help. Form study groups with your classmates. Students with a disability requiring accommodations should register with the Disability and Assistive Technology Center in the Learning Resource Center (the Library) and contact me at the beginning of the course.

Lecture Guide: Lecture PowerPoints will be provided on D2L before each lecture. Please print off and bring to lecture, so you can take notes directly on each slide. Although it is provided for your convenience, it could inadvertently be used as a passive way to study; students who just read over the PowerPoint slides before exams typically earn a "C-" or below in this course. Therefore, I recommend you read your textbook after each lecture to reinforce your understanding of that material. Read especially the paragraphs and captions pertaining to the images shown in lecture while writing your own notes. Then, after we complete a chapter in lecture, try answering practice questions provided on D2L. I also recommend each week to make up study-guide sheets. To keep up with the material, I recommend you 1) study from your own study-guide sheets before each exam, 2) make sure you understand the answers to each practice question and 3) come up with your own questions from each slide and have a Q&A study time with your peers. The best way to grasp the material is to form study groups with your classmates.

# **Suggested Study Habits:**

It is often observed that people learn more when they encounter and interact with subject material in different ways.

The following scale presents representative measures of how we might learn through different forms of interaction.

You learn:

10% of what we read
20% of what we hear
30% of what we see
40% of what we see & hear
50% of what we write
60% of what is discussed
70% of what we experience, and
95% of what we teach

## Before each class:

a) Read the textbook chapters and summary sections that pertain to the info in the lecture slides (PowerPoint). While reading, take notes on the side of each slide to help clarify the information discussed in class. These notes can be used as lecture slide guide sheets.

## Before the exam:

- a) **Rewrite your notes!** For each lecture, continue developing your lecture slide guide sheets and write out the information that was covered for each slide. Try to describe any images/figures on the slide in your own words. Try to do this for each lecture BEFORE the next lecture. Then read it over once to see the whole picture or overall theme of that lecture. When appropriate, make a table of info to help compare concepts.
- b) **Anticipate exam questions.** Come up with 1-2 questions of your own from each slide to quiz yourself later. Definitions, short answers, problems, and comparisons are all good types of questions.
- c) **Study your notes.** At the end of each week you will have made lecture slide guide sheets that include your notes for that material. Before the week's lectures, read over your lecture slide guide sheets and highlight only the information you could not remember.
- d) **Focus your studies.** Before the exam you will have made a set of lecture slide guide sheets with the information you need to reinforce already highlighted. Focus on this highlighted material one or two days before the exam. Reread, highlight info that you are having trouble learning or remembering and say it out loud, to yourself, with another person from class, a friend or study group.
- e) **Practice questions.** At the end of each chapter, try the practice questions (suggested on D2L) before looking at the answers in the back of the book. Write down the ones you do not understand and ask the instructor for guidance with those problems.
- f) **Revisit your study questions.** Try to answer the questions that you generated for each slide. Study with someone in class and try to answer each other's questions.
- g) **Teach your peers.** If you can teach it to another person, then you know it!

#### The night before the exam:

- a) **Value your sleep.** Being wakeful and well rested can help your performance on the exam. Be sure to get a good night's sleep before the exam. Cramming at the expense of sleep is not the best method.
- b) **Try to relax.** Study hard, but also seek ways to reduce your stress. Take breaks to help refocus your mind.

## After the exam:

- a) A good grade can result from **reading** the text and your notes, **listening** to lectures, **seeing** the words and figures, **writing** and **rewriting** notes from class, the **experience** of answering questions from the chapters or provided, and **discussing** topics with another person (saying it out loud).
- b) Your grade should reflect the amount of cumulative effort you put into your studying. Remember, for every hour of lecture, you should a lot two hours of designated studying time. In other words, for each exam you should be spending about 10-15 hrs studying! It isn't possible to effectively achieve that right before an exam.

If you can teach it to another person, then you know it! "The best way to learn is to teach!"

## **Laboratory Reports:**

Genetic researchers generally perform multiple experiments on a daily basis. Therefore, it is very important that researchers keep excellent records of their experimental findings in laboratory notebooks. Lab books are a form of documentation of work that was performed and reported in published manuscripts. Your lab reports will be based on a revised version of a manuscript, whereas all detail of the introduction and methods sections will be omitted. However, the discussion and conclusion sections will be greatly emphasized. In order to keep accurate records during each lab investigation, it is critical that you document everything you do in a lab notebook. Although it will not be graded, it will help you to keep organized notes about each lab and collect the data for your reports.

## Lab Reports are to be typed, 12 pt font, 1 inch margins all around, with nothing handwritten.

They will be graded based on completeness, proper interpretation of data, correctness of answers to questions in discussion, and ideas on optimizing results (improving protocol).

Use the following format:

Title, Group #, and Names of your partners

**Purpose:** State the reason for doing the experiment (1-2 sentences)

**Hypothesis:** State your hypothesis that you are testing. Place in purpose section in lab reports.

**Methods**: In sentence form, ONLY include the general headings of each part of each investigation from your lab manual. You are basically citing your manual. Therefore, there is no need to write the detailed protocols over again. However, include any changes in the methods you may have performed.

**Results**: Summarize your data. Include labeled gel images, tables, graphs, DNA sequences, DNA fingerprints, genetic trees. Describe procedural problems that may have occurred. Include answering any questions from the results section of each investigation. Do not rewrite the questions.

**Discussion**: In paragraph form, answer the questions addressed in the discussion section of each investigation. Do not answer all of the questions using one long paragraph. Use separate paragraphs when addressing different topics. If you did not get PCR products, then discuss what could have gone wrong with your experiment and give suggestions on how to improve your technique and/or adjust the protocol, etc.

**Conclusion**: Interpret your results according to those expected and why unexpected results may have occurred. State how the exercise addressed the purpose stated above. State how your work relates to broader questions in genetics and any conclusions you can draw relating to your stated hypothesis. If you were to continue this project, what would be the next step? What questions need further explanation?

**References:** Include any that you used besides your lab manual.

# MOLECULAR BIOLOGY SCHEDULE

(exam dates are firm, chapter dates are tentative)

| Week | Date   | Торіс                                                                                                      | Chapter<br>(Lab) |
|------|--------|------------------------------------------------------------------------------------------------------------|------------------|
| 1    | Jan 22 | Syll /Mol Bio Timeline & Evolution/DNA as Genetic<br>Material                                              | 1 & 2            |
|      | 24     | Chemical Basis of Information                                                                              | 3                |
|      | 24     | Syllabus, Prepare 1X TAE buffer,<br>Intro to Gel Electrophoresis Lab, Pour Gel                             | (1)              |
|      | 29     | Protein Structure                                                                                          | 4                |
| 2    | 31     | Protein Function                                                                                           | 5                |
|      | 31     | Gel Electrophoresis: run gel & analyze                                                                     | (1)              |
|      | Feb 5  | DNA & RNA Structure                                                                                        | 6                |
| 3    | 7      | Studying Genes: PCR & DNA Fingerprinting                                                                   | 7                |
|      | 7      | LAB REPORT #1 (gel electrophoresis) Due Isolate Tick & Human DNA                                           | (3)              |
|      | 12     | EXAM I                                                                                                     | [1-6]            |
| 4    | 14     | Studying Genes: DNA Sequencing & NGS                                                                       | 7                |
|      | 14     | Design Primers for Anaplasma phagocytophilum                                                               | (2a & 3)         |
|      | 19     | Studying Genes: NGS & Cloning                                                                              | 7                |
| 5    | 21     | Studying Genes: Hybridization & Screening                                                                  | 7                |
|      | 21     | PCR using Designed Primers; Pour gel                                                                       | (2a & 2b)        |
|      | 26     | Studying Genes: Transgenics & CRISPR                                                                       | 7                |
| 6    | 28     | Microarrays / Genomics                                                                                     | 7 & 8            |
|      | 28     | Run gel; Quantify Tick & Human DNA & Pour another gel;<br>Multiplex PCR of Borrelia, Anaplasma, & Babesia, |                  |
|      | Mar 5  | Changes in DNA Topology / Chromosome Architecture                                                          | 9 & 10           |
| 7    | 7      | DNA Replication                                                                                            | 11               |
| ,    | 7      | LAB #2 (primer design) REPORT Due<br>Run Gel; Purify Positive PCR Products, Cycle-Sequence                 | (2c)             |
|      | 12     | EXAM II                                                                                                    | [7-10]           |
| 8    | 14     | Modes of DNA Replication                                                                                   | 11               |
|      | 14     | Purify Cycle-sequencing Products, Prepare for Sequencing                                                   | (2c & 2d)        |

| Week | Date                                              | Торіс                                                                                                 | Chapter<br>(Lab)   |  |  |  |  |  |
|------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|
| 9    | 19                                                | DNA Mutation                                                                                          | 12                 |  |  |  |  |  |
|      | 21                                                | DNA Repair / Transposons                                                                              | 12 & 14            |  |  |  |  |  |
|      | 21                                                | Edit and Blast Search DNA Sequences to Identify Species – redo multiplex PCR, pour gel                | (2e)               |  |  |  |  |  |
|      | SPRING BREAK Mar 26 – 28                          |                                                                                                       |                    |  |  |  |  |  |
|      | Apr 2                                             | Immunoglobulin Genes                                                                                  | 14                 |  |  |  |  |  |
| 10   | 4                                                 | Prokaryotic Transcription of RNA                                                                      | 15                 |  |  |  |  |  |
|      | 4                                                 | Run multiplex-PCR gel<br>Allele-specific PCR of human genes, pour gel                                 | (4)                |  |  |  |  |  |
|      | 9                                                 | Eukaryotic Transcription & RNA Processing                                                             | 15 & 16            |  |  |  |  |  |
| 11   | 11                                                | RNA Processing                                                                                        | 16                 |  |  |  |  |  |
|      | 11                                                | Purify positive samples & cycle-seq<br>Run alleles gel & Identify Your Genotypes                      | (4)                |  |  |  |  |  |
|      | 16                                                | EXAM III                                                                                              | [11,12,<br>14, 15] |  |  |  |  |  |
| 12   | 18                                                | The Genetic Code / Translation of Protein                                                             | 17 & 18            |  |  |  |  |  |
|      | 18                                                | CentriSep & prepare to sequence Purify best gene product, Cycle-Sequence in both directions           | (4)                |  |  |  |  |  |
|      | 23                                                | Translation of Protein                                                                                | 18                 |  |  |  |  |  |
| 13   | 25                                                | Regulation of Gene Expression                                                                         | 19                 |  |  |  |  |  |
|      | 25                                                | Identify Pathogen Sequences, Purify Cycle-sequencing Products, Prepare for Sequencing                 | (4)                |  |  |  |  |  |
|      | 30                                                | Prokaryotic Gene Regulation – Lac Operon                                                              | 20                 |  |  |  |  |  |
| 14   | May 2                                             | Prokaryotic Gene Regulation – Trp & Ara Operons                                                       | 20                 |  |  |  |  |  |
|      | 2                                                 | LAB #3 (tick-borne disease) REPORT Due<br>Edit Forward & Reverse Sequences, Identify SNPs and Alleles | (4)                |  |  |  |  |  |
|      | 7                                                 | Genetic Control of Lambda Phage                                                                       | 20                 |  |  |  |  |  |
| 15   | 9                                                 | Eukaryotic Post-transcriptional Gene Regulation                                                       | 22                 |  |  |  |  |  |
|      | 9                                                 | LAB #4 (human genotyping) REPORT Due<br>Discussion of Lab Results & Cleanup                           |                    |  |  |  |  |  |
|      | EXAM IV – Tues, May 15, 2:45 – 4:45 pm [Ch 16-22] |                                                                                                       |                    |  |  |  |  |  |