Profitable commercial production for walleye and saugeye

Old and new technologies combine to raise fish in single growing season.

Walleye and saugeye have been raised for many years by both private and public sectors, mainly in outdoor pond type systems. New technologies are now being utilized to raise these fish to a much larger size in a shorter time. Indoor larval tank rearing systems have been demonstrated in Iowa for many years and now University of Wisconsin Stevens Point—Northern Aquaculture Demonstration Facility (UWSP-NADF) is using heated recycled water systems for grow out.

Growing walleye indoors allows the hatchery or fish farm to control environmental conditions such as water temperature, dissolved oxygen and other water quality parameters resulting in an ideal setting to grow fish quickly. Another point of focus is to eliminate the need for expensive “pinhead” minnow forage for advanced grow-out of walleye fingerlings that one would commonly see in outdoor pond settings. The pinhead forage cost can be as much as 50% of the entire forage cost for larger extended growth walleyes that are wanted by many natural resource agencies for stocking purposes. There is potential for the commercial use of these new technologies, especially in the Midwest, to produce walleye wanted by many natural resource agencies for stocking purposes. UWSP-NADF was also awarded a SBIR Advance Matching Grant to the technology of rearing walleye and hybrid walleye intensively for both food and other natural feeds are utilized. Survival rates increase greatly as fish become larger with the final grow out survival as high as 95%. Hybrid and purebred walleye were raised to market size (454 g) within 12 months with the RAS technology and new larval rearing methods.

Success rates of up to 60% for the first 30 day larval rearing period have been achieved with the correct tank setups. Cannibalism is normal for this species and special measures, such as grading, must be taken to limit this in each individual tank. Survival rates increase greatly as fish become larger with the final grow out survival as high as 95%. Hybrid and purebred walleye were raised to market size (454 g) within 12 months with the RAS technology and new larval rearing methods.

The facility has been able to intensively grow walleye and sauger to maturity and to create a broodstock which have been successfully spawned during normal and out-of-season spawning from February–June (normal spawning timeframe in Wisconsin for walleye is April). Walleye and hybrid walleye eggs have been successfully incubated, hatched and larve were feed trained and raised to market size in RAS on commercial diets. No brine shrimp, zooplankton or other natural feeds are utilized.

Since 2008, UWSP-NADF, along with collaborators and partners from many agencies and venues, has been researching methods to effectively raise walleye and hybrid walleye (saugeye) utilizing indoor larval fry systems for initial rearing and heated recirculating aquaculture systems (RAS) for grow-out.

Tilapia
Summer/fall Sale!
Limited Time Offer!

$100 OFF
REGULAR PRICE!
CALL TODAY!

Regular Price $500 USD
Now only $399 USD!

WWW.ILOVETILAPIA.COM
Contact us at:
TEL. +1 386-454-2016
EMAIL: jan-1960@hotmail.com

YOU KNOW FISH
WE KNOW AERATORS

Our COMPLETE LINE OF AERATORS delivers much needed oxygen for fresh and salt water fish in ponds, lakes, and during transport. Their proven dependability results in better production, reduced loss, and improved growth rate for your fish.

See our full line at www.freshflo.com
Check out our fish grader and feeder tool
Wisconsin • USA
920-208-1500

Turbidity, spray bar and 24 hour feeders are used for walleye and hybrid production at larval stages.
It is fully expected that these studies will demonstrate that the break-even costs of walleye and hybrid walleye production will be significantly lower than current market prices ... allowing for profitable commercial production.

Research developed technologies to raise walleye and sauger and hybrids to food size on commercial feeds and determined the requirements to expand the spawning season.

More information on this research and other projects can be found at aquaculture.uwsp.edu or by request from Emma Wiermaa, Outreach Specialist, ewiermaa@uwsp.edu.