Assessment of Coastal Water Resources and Watershed Conditions at Apostle Islands National Lakeshore (Wisconsin)

Cover photos:

Top Left: Outer Island Lighthouse, NPS Photo
Top Center: Sand River Estuary, Mainland Unit, Eric Epstein
Top Right: Sea Caves East of Meyers Beach, Mainland Unit, Dave Mechenich
Bottom Left: Outer Island Sand Spit, Eric Epstein
Bottom Center: Stockton Island Tombolo Interdunal Pool, Emmet Judziewicz
Bottom Right: Lake Superior from Trail East of Meyers Beach, Dave Mechenich
Assessment of Coastal Water Resources and Watershed Conditions at Apostle Islands National Lakeshore (Wisconsin)

George J. Kraft
Center for Watershed Science and Education
College of Natural Resources
University of Wisconsin – Stevens Point
Stevens Point, WI 54481

Christine Mechenich
Center for Watershed Science and Education
College of Natural Resources
University of Wisconsin – Stevens Point
Stevens Point, WI 54481

David J. Mechenich
Center for Watershed Science and Education
College of Natural Resources
University of Wisconsin – Stevens Point
Stevens Point, WI 54481

Stanley W. Szczytko
College of Natural Resources
University of Wisconsin – Stevens Point
Stevens Point, WI 54481

This report was prepared under Task Order J238005086 of the Great Lakes Northern Forest Cooperative Ecosystems Studies Unit (agreement H6000C02000).

U.S. Department of the Interior
National Park Service

Water Resources Division
Natural Resource Program Center
1201 Oak Ridge Dr.
Fort Collins, CO 80525
The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the audience, and is designed and published in a professional manner.

The Natural Resource Technical Reports series is used to disseminate the peer-reviewed results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. Current examples of such reports include the results of research that addresses natural resource management issues; natural resource inventory and monitoring activities; resource assessment reports; scientific literature reviews; and peer reviewed proceedings of technical workshops, conferences, or symposia.

Views and conclusions in this report are those of the authors and do not necessarily reflect policies of the National Park Service. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service.

Printed copies of reports in these series may be produced in a limited quantity and they are only available as long as the supply lasts. This report is also available from the Natural Resource Publications Management Web site (http://www.nature.nps.gov/publications/NRPM) on the Internet, or by sending a request to the address on the back cover.

NPS D-220, April 2007
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figures</td>
<td>viii</td>
</tr>
<tr>
<td>Tables</td>
<td>x</td>
</tr>
<tr>
<td>Appendices</td>
<td>xiii</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>xv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xx</td>
</tr>
<tr>
<td>Commonly Used Abbreviations</td>
<td>xxi</td>
</tr>
<tr>
<td>Introduction and Park Description</td>
<td>1</td>
</tr>
<tr>
<td>Size, Boundaries, Location, and Regional Setting</td>
<td>1</td>
</tr>
<tr>
<td>Key Features</td>
<td>6</td>
</tr>
<tr>
<td>Climate</td>
<td>6</td>
</tr>
<tr>
<td>Land Use and Vegetative Cover</td>
<td>8</td>
</tr>
<tr>
<td>Historic and Current Human Uses</td>
<td>11</td>
</tr>
<tr>
<td>Geology and Soils</td>
<td>12</td>
</tr>
<tr>
<td>General Hydrology and Water Budget</td>
<td>21</td>
</tr>
<tr>
<td>Water Resources of Lake Superior</td>
<td>23</td>
</tr>
<tr>
<td>Physical Characteristics</td>
<td>23</td>
</tr>
<tr>
<td>Biological Resources</td>
<td>26</td>
</tr>
<tr>
<td>Wetlands</td>
<td>32</td>
</tr>
<tr>
<td>Sandscapes</td>
<td>35</td>
</tr>
<tr>
<td>Groundwater</td>
<td>35</td>
</tr>
<tr>
<td>Water Resources of the Bayfield Peninsula</td>
<td>39</td>
</tr>
<tr>
<td>Siskiwit Bay to Mawikwe Point</td>
<td>39</td>
</tr>
<tr>
<td>Mawikwe Point to the East End of Mawikwe Bay</td>
<td>41</td>
</tr>
<tr>
<td>Sand Point to Point Detour, including Sand and Little Sand Bays</td>
<td>42</td>
</tr>
</tbody>
</table>
Point Detour to Raspberry Bay ... 46
Raspberry Point to Red Cliff Point, including Frog Bay ... 46
Red Cliff Bay Area .. 47
Buffalo Bay Area .. 47
Roys Point to Bayfield ... 47
Bayfield Area .. 47
Pikes Bay Area .. 47
Van Tassells Point to Houghton Point ... 47
Chequamegon Bay .. 48
Water Resources of the Islands ... 51
Basswood Island .. 52
Bear Island .. 52
Cat Island ... 53
Devils Island .. 53
Hermit Island .. 53
Long Island ... 53
Madeline Island .. 55
Manitou Island ... 55
Michigan Island ... 55
North Twin Island .. 59
Oak Island ... 59
Otter Island .. 61
Outer Island .. 61
Raspberry Island .. 66
Rocky Island ... 66
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand Island</td>
<td>67</td>
</tr>
<tr>
<td>South Twin Island</td>
<td>67</td>
</tr>
<tr>
<td>Stockton Island</td>
<td>67</td>
</tr>
<tr>
<td>York Island</td>
<td>76</td>
</tr>
<tr>
<td>Assessment of Park Water Resources</td>
<td>77</td>
</tr>
<tr>
<td>Sources of Pollutants</td>
<td>77</td>
</tr>
<tr>
<td>Surface Water Quality</td>
<td>103</td>
</tr>
<tr>
<td>Groundwater Quality and Monitoring Programs</td>
<td>116</td>
</tr>
<tr>
<td>Other Areas of Concern</td>
<td>117</td>
</tr>
<tr>
<td>Conclusions</td>
<td>133</td>
</tr>
<tr>
<td>Open Waters of Lake Superior</td>
<td>133</td>
</tr>
<tr>
<td>Mainland Unit Streams</td>
<td>133</td>
</tr>
<tr>
<td>Mainland Unit Lake Superior Coastline and Bays</td>
<td>135</td>
</tr>
<tr>
<td>Island Lake Superior Coastlines and Bays</td>
<td>135</td>
</tr>
<tr>
<td>Island Inland Waters and Wetlands</td>
<td>135</td>
</tr>
<tr>
<td>Recommendations and Rationale</td>
<td>137</td>
</tr>
<tr>
<td>Works Cited</td>
<td>143</td>
</tr>
</tbody>
</table>
Figures

Figure 1. Location of Apostle Islands National Lakeshore in the upper Great Lakes region of the United States (see Appendix A for sources). ... 2

Figure 2. Wilderness areas of the Apostle Islands National Lakeshore (after NPS 2006b). 3

Figure 3. Municipal units in the Apostle Islands area .. 4

Figure 4. Land management in the Apostle Islands area ... 5

Figure 5. Key features and water resources of Apostle Islands National Lakeshore 7

Figure 6. Land cover in the Apostle Islands National Lakeshore area (WDNR 1998). 10

Figure 7. Bedrock geology of the Apostle Islands area ... 14

Figure 8. Pleistocene Geology of the Apostle Islands area (after Clayton 1984) 17

Figure 9. Lake Superior bathymetry in the vicinity of Apostle Islands National Lakeshore (derived from NOAA 2004, 2005a, b, c) ... 24

Figure 10. Shoreline types for Apostle Islands National Lakeshore (USEPA Region 5 2000). 25

Figure 11. Groundwater contaminant susceptibility of the Apostle Islands National Lakeshore (WDNR et al. 1987). ... 38

Figure 12. Water resources of the Bayfield Peninsula, including the mainland unit of Apostle Islands National Lakeshore (WDNR 2001; NPS 2005d; NRCS 2005) 40

Figure 13. Mainland shoreline between Meyers Beach and Little Sand Bay, summer, 2006 (Photo by D. Mechenich). ... 42

Figure 14. Mouth of Sand Bay (Photo by Bayfield County Land Records Department http://www.bayfieldcounty.org/landrecords/shore_2002/info_oblique2002.htm). 44

Figure 15. Little Sand Bay (Photo by Bayfield County Land Records Department http://www.bayfieldcounty.org/landrecords/shore_2002/info_oblique2002.htm). 46

Figure 16. Location of the Chequamegon Bay watershed in the vicinity of Apostle Islands National Lakeshore (WDNR 2003e). ... 50

Figure 17. Streams and wetlands of Michigan Island, Apostle Islands National Lakeshore 56

Figure 18. Southwestern end of Michigan Island, showing sand spit and lagoon (NPS photo) .. 58

Figure 19. Streams of Oak Island, Apostle Islands National Lakeshore (NRCS 2005). 59
Figure 20. Streams and wetlands of Outer Island, Apostle Islands National Lakeshore.......... 62

Figure 21. Outer Island sand spit and lagoon (NPS photo). ... 64

Figure 22. Streams and wetlands of Stockton Island, Apostle Islands National Lakeshore (NPS 1999c; NRCS 2005). .. 71

Figure 23. Interdunal pool, Stockton Island Tombolo (Photo by E. Judziewicz)......................... 75

Figure 24. Toxic air releases and other air pollutant releases in the vicinity of Apostle Islands National Lakeshore (USEPA 2005a). .. 80

Figure 25. Facilities with NPDES permits in the vicinity of Apostle Islands National Lakeshore (USEPA 2005a). ... 84

Figure 26. Lake Superior shipping lanes (NOAA 2005d). ... 93

Figure 27. Shoreline sensitivity classifications for the Apostle Islands National Lakeshore (USEPA Region 5 2000). ... 95

Figure 28. Docks in the Apostle Islands National Lakeshore (NPS 2003)................................... 99

Figure 29. Population (number of residents per tract in the 2000 census) of the watershed above the mainland unit of the Apostle Islands National Lakeshore (U.S. Census Bureau 2006). 102

Figure 30. STORET water quality monitoring stations included in the Apostle Islands National Lakeshore baseline water quality data report (NPS 1999a).. 104

Figure 31. Locations for fish tissue contaminant sampling in the vicinity of Apostle Islands National Lakeshore, 1974-2005 (WDNR, Candy Schrank, Fish Contaminant and Toxicology Program Coordinator, pers. comm. 2006). ... 106

Figure 32. Population trends for Ashland and Bayfield Counties, Wisconsin, in the vicinity of Apostle Islands National Lakeshore (U.S. Census Bureau 2006). .. 119

Figure 33. Population trends for towns and cities in the vicinity of Apostle Islands National Lakeshore, 1950-2005 (Ashland plotted on separate axis) (U.S. Census Bureau 2006). 119

Figure 34. Classifications of relative coastal change potential for Apostle Islands National Lakeshore (after Pendleton et al. 2006). .. 131
Tables

Table 1. Climate data for the inland Ashland Experimental Farm compared to Madeline Island and Bayfield 6 North, which are affected by proximity to Lake Superior (Wisconsin State Climatology Office 2004). ... 8

Table 2. Vegetation types by habitat in Apostle Islands National Lakeshore (after Van Stappen 1999). ... 9

Table 3. Wisconsin Land Cover Grid land cover for Apostle Islands National Lakeshore islands, mainland unit, and land in the mainland unit's watershed (WDNR 1998). 11

Table 4. Pleistocene Geology of Apostle Islands National Lakeshore (after Clayton 1984). 15

Table 5. Soil mapping units and areas for Apostle Islands National Lakeshore mainland watershed, mainland unit, and islands (NRCS 2006a, 2006b). .. 19

Table 6. Hydrologic budget for the Wisconsin portion of the Lake Superior basin, 1931-1960 (Young and Skinner 1974). ... 21

Table 7. Lake Superior shoreline types, lengths, and USEPA shoreline sensitivity classification for Apostle Islands National Lakeshore (USEPA Region 5 2000) ... 26

Table 8. Classification of Lake Superior fisheries habitats by Lake Superior Technical Committee (LSBP 2000) and U.S. Fish and Wildlife Service (Newman 2003) 27

Table 9. Ecological roles of important Lake Superior fish species, including (*non-native species) (from GLFC 2001). ... 31

Table 10. Locations, construction information, and sampling dates for USGS groundwater sampling sites in the vicinity of Apostle Islands National Lakeshore (Rose 1988; USGS 1998). 37

Table 11. Sizes of the islands of Apostle Islands National Lakeshore and their streams and wetlands on the NPS hydrography and NRCS 1:12K hydrography coverages (NPS 1999c; NRCS 2005). ... 51

Table 12. Wetland types of Long Island, Apostle Islands National Lakeshore (Meeker 1998)... 54

Table 13. Wetlands of Michigan Island, Apostle Islands National Lakeshore (NPS 1999c) 57

Table 14. Streams of Michigan Island, Apostle Islands National Lakeshore (NRCS 2005) 57

Table 15. Streams of Oak Island, Apostle Islands National Lakeshore (NRCS 2005). 60

Table 16. Streams of Outer Island, Apostle Islands National Lakeshore (NRCS 2005) 63
Table 17. Wetlands of Outer Island, Apostle Islands National Lakeshore (NPS 1999c). 63
Table 18. Streams of Stockton Island, Apostle Islands National Lakeshore (NRCS 2005). 72
Table 19. Wetlands of Stockton Island, Apostle Islands National Lakeshore (NPS 1999c). 73
Table 20. Facilities on the USEPA Toxic Release Inventory in the vicinity of Apostle Islands National Lakeshore with releases in 2000 or later (USEPA 2005a). ... 79
Table 21. Facilities on the USEPA Toxic Release Inventory with releases in 2000 or later, Duluth, MN and Superior, WI, approximately 113 km from Apostle Islands National Lakeshore (USEPA 2005a). ... 81
Table 22. Facilities on the USEPA Air Releases (AIRS/AFS) Inventory in the vicinity of Apostle Islands National Lakeshore (USEPA 2005a). .. 83
Table 24. Locations of spills and leaks that have contaminated soil and groundwater in the vicinity of Apostle Islands National Lakeshore, and the status of their cleanup (WDNR 2006b). .. 89
Table 25. Marine facilities providing services and amenities to boaters in the vicinity of Apostle Islands National Lakeshore (Dahl 2001). .. 98
Table 26. NPS docks in Apostle Islands National Lakeshore (Dahl 2001). 98
Table 27. Numbers of fish sampled for contaminants, and total number of analyses performed for each site (in parentheses) by WDNR each year at open water sites in Lake Superior around APIS, 1974-2005 (years without samples omitted) (WDNR, Candy Schrank, Fish Contaminant and Toxicology Program Coordinator, pers. comm. 2006). ... 107
Table 28. Goals and Objectives in Land and Water Management Plans for Ashland and Bayfield Counties* (Stable Solutions 2005a, b).. 109
Table 29. Water resource-related goals in the Red Cliff Band of Lake Superior Chippewas Land Use Plan (2005). ... 111
Table 30. Secchi depths (m) for sites monitored by Apostle Islands National Lakeshore staff, 1991-1995 (Lake Superior Center 1997) and 2000-2003 (Burkman and Van Stappen 2003). .. 111
Table 31. Total nitrogen and phosphorus for sites in Apostle Islands National Lakshore, summer 2004. Number of samples was 3 except for Basswood Island and Sand River, where n=1 (Axler et al. 2006). ... 112
Appendices
Appendix A. Sources of data for base map and explanation of map terminology. 172

Appendix B. List of additional references. ... 174

Appendix C. Soil associations for individual islands, Apostle Islands National Lakeshore (NRCS 2006a, b). .. 176

Appendix D. Lake Superior shoreline types and mileage for islands and the mainland unit, Apostle Islands National Lakeshore (USEPA Region 5 2000). ... 183

Appendix E. Classifications and scientific and common names of species listed in this report. 185

Appendix F. Fish species list for Lake Superior. N = native; I = introduced and reproducing; R = reported to occur but non-reproducing; P = possible occurrence, native; U = reported but unlikely occurrence. (table reproduced from GLFC 2001)... 195
Executive Summary

Apostle Islands National Lakeshore (APIS) is located at the tip of the Bayfield Peninsula in northern Wisconsin. It includes 21 of the 22 Apostle Islands in Lake Superior, a strip of the mainland, and the waters of Lake Superior out to 0.4 km from the islands’ shores. The lakeshore encompasses 17,017 ha of land and 11,057 ha of Lake Superior, only 15% of the archipelago’s total water area. APIS was designated and placed under the management of the National Park Service (NPS) by an act of Congress in 1970 and further strengthened by designation of about 80% of its land area as the Gaylord Nelson Wilderness in 2004.

Key features of APIS include Lake Superior, the largest and one of the cleanest freshwater lakes in the world. APIS also includes some of the most pristine sandscapes left in the Great Lakes region, including sand spits, cuspatate forelands, tombolos, a barrier spit, and numerous beaches; many of these sandscapes are recognized as Wisconsin State Natural Areas. Other outstanding features include colorful sandstone cliffs and sea caves, old-growth forests, and the largest collection of lighthouses in the National Park System. In 2001, approximately 48,000 visitors used private motorboats, kayaks, or sailboats to tour the islands. The NPS provides 20 docks, and nearly all the islands have natural anchorage areas that provide shelter from storm winds and opportunities for recreational activities. Inland surface water resources include lagoons on Michigan, Stockton, and Outer Islands, unnamed perennial streams on Stockton and Oak Islands, and the Sand River Estuary. Bogs, beaver ponds, and wetlands are common, and APIS has more kilometers of intermittent streams than any other Great Lakes national park.

The APIS area has long, cold winters and short, moderately warm summers, made somewhat more maritime by proximity to Lake Superior. APIS is located at the northern limit of the hemlock-white pine-northern hardwood forest and the southern limit of the boreal forest and is 96% forested. Much of adjoining Bayfield County is also forested. Major landowners on the Peninsula include the Wisconsin Department of Natural Resources, the USDA - Forest Service, and Bayfield County. The north and northeastern tip of the Peninsula is the Red Cliff Band of Lake Superior Chippewa Indian Reservation.

APIS includes a number of regionally rare habitats, including old-growth forest, boreal forest, five types of northern forests, forest seep, clay bluff communities, sandstone cliff communities, lagoon and bog communities, forested ridge and swale, coastal fen, Great Lakes barrens, and dune communities. It is officially home to five current Wisconsin-endangered plant species (including satiny willow, *Salix pellita*) and 12 current Wisconsin-threatened plant species [including coast sedge (*Carex exilis*), lenticular sedge (*Carex lenticularis*), Michaux’s sedge (*Carex michauxiana*), drooping sedge (*Carex prasina*), broad-leaved twayblade (*Listera convallarioides*), flat-leaved willow (*Salix planifolia*), and narrow false oats (*Trisetum spicatum*), as well as 23 plant species of special concern. APIS is also home to the federally endangered piping plover (*Charadrius melodus*) and the federally threatened bald eagle (*Haliaeetus leucocephalus*), as well as 11 bird species of special concern in Wisconsin. Other species of special concern include four-toed salamanders (*Hemidactylium scutatum*) and several types of aquatic and terrestrial insects.

Lake Superior has been classified as an ultra-oligotrophic lake, and its phytoplankton and zooplankton communities reflect that status. Diatoms and phytoflagellates contribute most of the
lakewide phytoplankton biomass. The zooplankton community is dominated by large calanoid copepods, with cladocerans also present (and perhaps becoming more numerous in western Lake Superior). The fish community includes as many as 96 species, including some of commercial importance, such as lake trout (*Salvelinus namaycush*), lake whitefish (*Coregonus clupeaformis*), and lake herring (*C. artedi*). The conditions of Lake Superior bays in the mainland unit and surrounding the islands generally mirror the open water conditions. The three major lagoons in the park on Outer, Stockton, and Michigan Islands also generally reflect oligotrophic conditions. Less is known about the biota of Sand River and Saxine Creek in the mainland unit, the many ephemeral and a few permanent streams on the islands, or the vernal pools that may provide important habitat for amphibians and other species.

Potential sources of pollution to APIS are numerous and vary greatly in magnitude. Toxic organic contaminants, which are of particular concern in Lake Superior, may originate as air pollutants as far away as Mexico and Central America. Local sources of air pollutants are better-regulated, but the potential impact on APIS of permitted local and regional emissions is unknown.

Point sources of water pollution to Lake Superior near APIS include five small municipal wastewater treatment plants, an electrical power generating facility, and a fish hatchery. Nonpoint sources include Great Lakes shipping activities, tour boats and private boats, marinas, and stormwater discharges. Great Lakes cargo ships travel within 8 km of Devils and Sand Islands, 6 km of Michigan Island, and 1 km of Long Island, and may come closer during storms. These have the potential to accidentally spill cargoes or fuel, or discharge bilge water or ballast water that could contain exotic species. Bayfield Peninsula municipalities are all too small to be covered by United States Environmental Protection Agency (USEPA) stormwater regulations. Potential sources of water pollution to the APIS mainland unit’s streams and bays include on-site wastewater treatment systems, logging, and road building.

APIS’s surface waters have generally been determined to be of high quality. Lake Superior waters continue to be notable for their clarity, but runoff from Peninsula streams sometimes creates sediment plumes that extend well into the islands. These sediments are mainly clay particles and are sometimes high in phosphorus, but to date, excessive phosphorus levels have not been found in routine Lake Superior monitoring. Some data indicate that nitrate has been increasing lakewide over the period of record, perhaps related to atmospheric deposition. Only a few exceedences of aquatic freshwater life or human health criteria have been recorded. Many fish species from Lake Superior have fish consumption advisories, especially for women and children, because of polychlorinated biphenyl (PCB), mercury or dioxin contamination. Limited data indicate that the quality of APIS groundwater resources is good, with a few aesthetic problems for domestic use related to iron and manganese.

Population growth in Ashland and Bayfield Counties has been slow since 1990, and population is much lower than the peak experienced around 1920. Ashland County’s population is declining; Bayfield County is experiencing population growth around small unincorporated towns along major roads, rural towns around Ashland, and in the Town of Russell associated with the Red Cliff Indian Reservation. Housing growth is outpacing population growth, largely
because of second home development. Development and population pressures should be observed for possible impact on APIS resources.

Six aquatic invasive species are currently known to exist in the APIS vicinity: the sea lamprey (*Petromyzon marinus*), the Eurasian ruffe (*Gymnocephalus cernuus*), the threespine stickleback (*Gasterosteus aculeatus*), the spiny water flea (*Bythotrephes longimanus*), the Eurasian watermilfoil (*Myriophyllum spicatum*), and purple loosestrife (*Lythrum salicaria*). Other aquatic invasives that are known to exist in Lake Superior and may be considered to be encroaching on APIS include the alewife (*Alosa pseudoharengus*), New Zealand mudsnail (*Potamopyrgus antipodarum*), zebra mussel (*Dreissena polymorpha*), Asian clam (*Corbicula fluminea*), round goby (*Neogobius melanostomus*), and white perch (*Morone americana*). Primary vectors for introducing exotic species to Lake Superior are the bilge and ballast water of commercial ships, boating, and angler activity.

Climate change could have major impacts on APIS resources, both by altering the habitats that enable certain rare species to survive as well as by allowing exotic species to compete more successfully. Some of the projected impacts include warmer inland waters with less dissolved oxygen and more phosphorus and mercury release from sediments, changes in fish communities away from coldwater species, and reductions in the size of wetland habitats. Climate change could change Lake Superior water levels with potentially severe effects on APIS sandscapes and on the configuration of the islands themselves. Sandscapes are also sensitive to trampling caused by human foot traffic.

The potential for degradation of APIS water resources is shown in Table i. Documented problems include water clarity issues related to phosphorus-laden sediment loss from Bayfield Peninsula watersheds; fish consumption advisories related to mercury, polychlorinated biphenyl and dioxin contamination; regional air pollution; visitor use intensity, especially on sandscapes; and aquatic invasive species.

Recommendations detailed in the report include the following:

Water quality and biotic evaluation and monitoring
- Routine water quality monitoring should continue as outlined in GLKN protocols and Axler et al. (2006).
- The potentially ecologically significant vernal pools and the abundant and diverse wetland resources need additional study and long-term monitoring.
- An assessment of all APIS streams and rivers should be conducted using standardized rapid bioassessment techniques to determine existing water quality, and monitoring should continue on a five year basis to document changes and trends in water quality throughout APIS.
- Intermittent streams at APIS need further water quality and biological investigation and monitoring.
- Continued cooperation with WDNR, USFWS, and the tribes is encouraged to ensure that resource protection goals for APIS fish populations are met.
Table i. Potential for degradation of water resources in Apostle Islands National Lakeshore.

<table>
<thead>
<tr>
<th>Stressor/Environmental Indicator</th>
<th>Lake Superior open waters</th>
<th>Mainland Unit Lake Superior coastline and bays</th>
<th>Mainland Unit streams</th>
<th>Islands Lake Superior coastline and bays</th>
<th>Islands inland waters and wetlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water quality indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water clarity</td>
<td>OK</td>
<td>PP</td>
<td>EP</td>
<td>EP</td>
<td>NA</td>
</tr>
<tr>
<td>Nutrients</td>
<td>PP</td>
<td>PP</td>
<td>EP</td>
<td>PP</td>
<td>PP</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>PP</td>
<td>EP</td>
</tr>
<tr>
<td>Fecal bacteria</td>
<td>OK</td>
<td>OK</td>
<td>NA</td>
<td>PP</td>
<td>OK</td>
</tr>
<tr>
<td>Sediment</td>
<td>OK</td>
<td>PP</td>
<td>EP</td>
<td>EP</td>
<td>NA</td>
</tr>
<tr>
<td>Biological indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zooplankton populations</td>
<td>PP</td>
<td>PP</td>
<td>NA</td>
<td>PP</td>
<td>PP</td>
</tr>
<tr>
<td>Land use-related stressors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and air pollution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local air pollution sources</td>
<td>PP</td>
<td>PP</td>
<td>PP</td>
<td>PP</td>
<td>PP</td>
</tr>
<tr>
<td>Wastewater discharges</td>
<td>OK</td>
<td>NA</td>
<td>NA</td>
<td>PP</td>
<td>NA</td>
</tr>
<tr>
<td>covered by NPDES permits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stormwater</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>PP</td>
<td>NA</td>
</tr>
<tr>
<td>Agriculture</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>NA</td>
</tr>
<tr>
<td>Landfills</td>
<td>OK</td>
<td>PP</td>
<td>PP</td>
<td>OK</td>
<td>NA</td>
</tr>
<tr>
<td>Septic systems</td>
<td>OK</td>
<td>PP</td>
<td>PP</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Residential development</td>
<td>OK</td>
<td>PP</td>
<td>PP</td>
<td>PP</td>
<td>NA</td>
</tr>
<tr>
<td>Road building</td>
<td>OK</td>
<td>PP</td>
<td>PP</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Logging</td>
<td>OK</td>
<td>PP</td>
<td>PP</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Recreational and commercial use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land-based visitor use intensity</td>
<td>NA</td>
<td>PP</td>
<td>OK</td>
<td>EP</td>
<td>OK</td>
</tr>
<tr>
<td>Recreational boating</td>
<td>PP</td>
<td>PP</td>
<td>NA</td>
<td>PP</td>
<td>NA</td>
</tr>
<tr>
<td>Commercial tour boating</td>
<td>PP</td>
<td>OK</td>
<td>OK</td>
<td>PP</td>
<td>NA</td>
</tr>
<tr>
<td>Commercial fishery</td>
<td>OK</td>
<td>OK</td>
<td>NA</td>
<td>OK</td>
<td>NA</td>
</tr>
<tr>
<td>Great Lakes shipping</td>
<td>EP</td>
<td>PP</td>
<td>NA</td>
<td>PP</td>
<td>NA</td>
</tr>
<tr>
<td>Climate change</td>
<td>PP</td>
<td>PP</td>
<td>PP</td>
<td>PP</td>
<td>PP</td>
</tr>
</tbody>
</table>

Definitions: EP= existing problem; PP = potential problem; OK= no detectable problem
shaded =limited data; NA= not applicable.
The genetic makeup of coaster brook trout stocks around the islands should be investigated, and the need for a locally developed brood stock more appropriate to the islands should be evaluated (Lafrancois and Glase 2005).

Stressor monitoring, evaluation, and management

- Surveys for known and encroaching aquatic invasive species in APIS should be expanded, and control programs should be undertaken where feasible.
- Specific pollutants in local and regional air emissions and their potential effects on APIS water resources should be evaluated, and monitoring should be conducted where warranted.
- Water level fluctuations should be monitored at unique island habitats such as splash pools and temporary beach habitats, and habitat losses should be documented.
- Water and sediment monitoring should be evaluated for heavily-used recreational boating areas, including Presque Isle Bay, for marine engine – related contaminants such as MTBE (methyl tertiary butyl ether), PAHs (polyaromatic hydrocarbons), BTEX (benzene, toluene, ethylbenzene, and xylene) and heavy metals such as copper.
- Locations of stormwater discharges on the Bayfield Peninsula should be documented and evaluated for potential impacts.
- The WDNR’s proposal to quantify the effects of erosion control practices on Lake Superior tributaries by monitoring suspended solids and flow should be supported, and the results should be examined for possible impacts or mitigation opportunities for mainland unit streams.
- Population trends in the watershed of the mainland unit should be monitored, and ways to monitor the effects of local land use practices (logging, road building, and residential development) on APIS mainland unit waters should be developed and implemented in proportion to increased use.
- Effects of recreation on shoreline habitat and shoreline processes should continue to be monitored at heavily visited sites. In particular, physical damage to sensitive shoreline resources from boat wakes, groundings or other recreational boating impacts need to be assessed and monitored.
- The town of Russell landfill should be discussed with WDNR specialists to define whether or not it is in the Sand River basin and to determine if further investigation of the site is warranted.

Planning

- A plan should be developed to mitigate impacts of future climate change where feasible strategies can be identified.

Education

- Emphasis should be placed on boater education about current regulations and risks posed by fuel spills, human waste discharge, or discharge of bilge water or bait buckets into nearshore Lake Superior waters.