# Lakes & Watersheds Measurements & Modeling

Paul McGinley Center for Watershed Science & Education UW Stevens Point





Center for Watershed Science and Education College of Natural Resources **University of Wisconsin - Stevens Point** 

Lake Leaders 2018

#### Today.... 1) Watersheds and 2) Lakes & 3) Streams

- Functioning big picture arm waving & the development of "Conceptual" Models
- Modeling Approaches
  - Fundamentals
  - Examples

#### **Goal- Understand & Apply several Models**

(and most important... not make a potentially confusing topic more confusing...)

#### First, What's a Watershed?



Land area where the water drains to the outlet point of interest

## Why is that important?









• Precipitation

\_ Inches per Year +/-

\_storms per year +/-

hours of precipitation (>trace) per year +/-





• Precipitation

32 Inches per Year +/-

100 storms per year +/-500 hours of precipitation (>trace) per year +/-







10 inches /year on 1 square mile... = 23,000,000 cubic feet /year!



# Really?

- USGS 05379500 TREMPEALEAU RIVER AT DODGE, WI
- DRAINAGE AREA.--643 square miles.



# Really?

- USGS 05340500 ST. CROIX RIVER AT ST. CROIX FALLS, WI
- DRAINAGE AREA. 6,240 square miles.



# This is a watershed model !



• Water Budget

Water Entering the Lake Each Year = (10 in/year)\*(Watershed Area)

# What's a model

#### One definition: A mathematical description to help <u>visualize</u> something

#### help us "visualize" how a current condition or help us "visualize" how future actions could alter the current condition

- Examples
  - How long does water spend in my lake?
  - If a wooded area is converted to row crops, what might that do to the phosphorus concentration in the lake?

- Useful?
  - -Residence time =
    - = Amount of Water in Lake Rate Which Water Leaves Lake

- Useful?
  - -Say 10,000 acre lake, mean depth of 40 feet with a 150,000 acre watershed
  - –Residence time estimate =
    - = (10,000 acre)(40 feet mean depth) (150,000 acre)(0.83 ft/yr)
    - = 3.2 years

#### Rule #1

#### "All models are wrong but some are useful"

George Box



# Limitations

- Year-to-Year Variations?
- Different parts of the watershed have different response
  - Impervious surfaces
  - Compacted soil / raindrop impact

# How can we improve this model?

- Spatial Variability
- Temporal Variability

• Of course this comes at a cost... is it necessary? Is it worth it?

# Modeling the Land?



**Annual Volume** 

**Very Simple** 



## Closely Related...Nutrient Movement

• Just talked about water movement on land

Next... <u>Nutrients Loss from Land</u>
 —then <u>Lakes & Streams</u>

# Let's look at Phosphorus Movement

- Important Implications for Lakes & Streams
- Oligotrophic "few" "foods"
- Eutrophic "many" "foods"



Table 1. Completed trophic state index and its associated parameters.

| TSI | Secchi<br>disk (m) | Surface<br>phosphorus<br>(mg/m3) | Surface<br>chlorophyll<br>(mg/m <sup>3</sup> ) |
|-----|--------------------|----------------------------------|------------------------------------------------|
| 0   | 64                 | 0.75                             | 0.04                                           |
| 10  | 32                 | 1.5                              | 0.12                                           |
| 20  | 16                 | 3                                | 0.34                                           |
| 30  | 8                  | 6                                | 0.94                                           |
| 40  | 4                  | 12                               | 2.6                                            |
| 50  | 2                  | 24                               | 6.4                                            |
| 60  | 1                  | 48                               | 20                                             |
| 70  | 0.5                | 96                               | 56                                             |
| 80  | 0.25               | 192                              | 154                                            |
| 90  | 0.12               | 384                              | 427                                            |
| 100 | 0.062              | 768                              | 1183                                           |

http://www.secchidipin.org/trophic\_state.htm



#### 45,000 lb plant P 50,000 lb organic matter P 250,000 lbs soil P (top 6")

# 350,000 Ib P /sq mile

Adapted from Yanai, R.D., 1992. Phosphorus Budget of a 70-year-old northern hardwood forest Biogeochemistry 17:1-22

• Water Across Land = Phosphorus in the Water



#### Tale of Two Pathways

10 inch/year @ 0.02 mg/l < <u>0.01</u> <u>lb/acre</u>/year

2 inch/year @ 1

mg/l = 0.45

**Ib/acre** 

/year

(+ 9 inch/yr @ 0.02 mg/l)

# "Phosphorus Export Coefficients" (pounds/acre-year)

|                               | Low  | Most Likely | High |
|-------------------------------|------|-------------|------|
| Agriculture<br>(Mixed)        | 0.3  | 0.8         | 1.4  |
| Med Density<br>Urban          | 0.3  | 0.5         | 0.8  |
| Pasture                       | 0.1  | 0.3         | 0.5  |
| Forest                        | 0.05 | 0.09        | 0.18 |
| Atmospheric<br>(lake surface) | 0.1  | 0.3         | 0.5  |

Adapted from WiLMS, Wisconsin Lake Modeling Suite http://dnr.wi.gov/lakes/model/

# Useful?

- Estimate the long term average P transfer from a watershed to the lake
  - 90,000 acres Row Crop
    - 90,000 ac\*0.8 lb/ac-year = 72,000 lbs/year
  - 30,000 acres Pasture/Grass
    - 30,000 ac\*0.3 lb/ac-year = 9,000 lbs/year
  - 30,000 acres Med Den Urban
    - 30,000 ac\*0.5 lb/ac-year = 15,000 lbs/year
  - TOTAL = 96,000 lbs/year

#### **Challenges: Annual Variations in P to Lake!**



• P Load (Ib) to Lake (Lathrop and Panuska)





## Part 2 - LAKES



- Important
- But what do we want to model?
  - Water level, Algal density, Fish, Phosphorus Concentration



## WATER

## **Our First Model**

• Goal– predict the P concentration

Given

- The amount of P entering the lake
- The amount of water entering the lake



# Let's give this a try

- 10,000 acre lake
- 150,000 acre watershed



Recall our simple watershed model...

- 96,000 lb/year P
- 125,000 acre-ft/year water

# "Simple Model" (annual P/annual water)

• Concentration of P

= Mass of P / Volume of Water

- = 96,000 pounds / 23,000,000 cubic feet
- = 285 ug/l

#### Take a look at some data





# Not a very good model

• Why?

• What happens to P in a lake?

 Another observation on modeling

 "Everything should be made as simple as possible, but no simpler" A. Einstein



# Second Model



"diminished by retention term as P apparently lost to sediments" (Nurnberg, 1984)

**Uniform ("steady-state") Conditions** The P concentration doesn't change with time The amount of P in the lake is constant



With this added

# Let's give this a try

- 10,000 acre lake
- 150,000 acre watershed



- 96,000 lb/year P
- 125,000 acre-feet water/year
- 40,500,000 m2 lake surface
- 10 meter/year settling velocity



# **Our "Less Simple Model"**

Concentration of P

#### = 108 ug/l (better?)

• Useful?





# Useful?



#### Lake Response Model?



• Useful?



But we can make this very complex!



## **Summary Discussion**

- Watershed
  - Water Budget
  - Phosphorus Budget
- Lake
  - Concentrations
  - Response

- Simple
  - Reduce Spatial Variations
  - Long Term Averages
- Complex
  - Time and Space
     Variations
  - Daily / Yearly
     Variations

## Questions

Paul McGinley UW-Stevens Point pmcginle@uwsp.edu (715) 346-4501



Center for Watershed Science and Education College of Natural Resources **University of Wisconsin-Stevens Point** 

