WISCONSIN LAKES

Courtesy of Lake Partnerships

Wisconsin Department of Natural Resources Wisconsin Association of Lakes University of Wisconsin Extension

Definitions & Background

Wisconsin's Glacial Legacy

Wisconsin's lakes

Wisconsin has one of the largest concentration of fresh water glacial lakes on the planet.

Recent History of Wisconsin's Lakes

Lakes Provide Services

07/08/2004

Ecosystem Cultural Societal

- A

Sara Schmid

Wisconsin's Lakes are Changing Faster than Ever:

Algae blooms (phosphorus pollution)

Destruction of shoreline habitat

Invading plants and animals

OVERVIEW

- Unique Properties of Water
- Lake Types
- Physical, Chemical, Biological and Habitat Characteristics
- Technical Aspects

UNIQUE PROPERTIES OF WATER

- Universal Solvent
- Chemical Molecular Structure H20
- Greatest Density at 4° C or 39° F

Unique Properties of Water

- Living organisms (including us!) are ~70% water
- 71% Earth's surface covered by water
- <1% water on Earth is freshwater
- .009% water on
 Earth is freshwater
 lakes

From waterencyclopedia.com

UNIQUE PROPERTIES OF WATER

- Physical Properties
- 71% Earth's Surface Covered by Water
- <1% Water
 on Earth is
 Freshwater
- .009% water
 on Earth is
 Freshwater
 Lakes

HYDROLOGIC CYCLE

THE WISCONSIN WATER STORY

32"

20"

Change in water table (also lakes and wetlands)

Water In – Water Out = \pm Storage

Discharge to streams

IMPACTS AND ADAPTATION

The first report of the Wisconsin Initiative on Climate Change Impacts

2011

WISCONSIN INITIATIVE ON CLIMATE CHANGE IMPACTS

WICCI's First Adaptive Assessment Report released Feb 2011

30+ Authors

10 Editorial Team Members

22 Science Council Members

22 Chairs/Co-Chairs of 15 Working Groups

Major Drivers of Climate Change Impacts on Water Resources

- Thermal Impacts (Increased air and water temps, longer ice-free period, more ET)
- Changing rainfall patterns (seasonal and spatial variability, + or – water, less precip in the form of snow)
- Increased storm intensity (more frequent large precipitation events)

Number of days with interest precipitation is projected to increase across Wisconsin in 21st century.

southern

Wisconsin

Development Impacts on the Water Cycle

DD

function like this?

300-600 ppb TP

Design Principles

Retain & Restore the Natural Landscape

WISCONSIN INITIATIVE ON CLIMATE CHANGE

Key Water Resource Impacts

- Increased flooding
- Increased frequency of harmful blue-green algal blooms
- Conflicting water use concerns
- Changes in water levels
- Increased sediment and nutrient loading
- Increased spread of aquatic invasive species

Warmer temperatures and increased runoff from large storm events causes water quality problems, blue-green toxins, eutrophication, etc

OVERVIEW

- Unique Properties of Water
- Lake Types
- Physical, Chemical, Biological and Habitat Characteristics
- Technical Aspects

LAKE TYPES

- Seepage
- Groundwater Drainage
- Drainage
- Impoundments
- Oxbow

SEEPAGE LAKE

- Natural Lake
- Water Source
 - Groundwater
 - Precipitation
- No Stream
 Outlet/ Inlet

Lake Types

SEEPAGE LAKE

- Long & Des MoinesLakes, Burnett Co.
- Shell Lake, Washburn Co.
- Whitefish Lake, Douglas Co.,
- Potowotomi Lakes, Bayfield Co.

GROUNDWATER DRAINAGE

- Natural Lake
- Water Source
 - Groundwater
 - Precipitation
 - Limited Runoff
- Has Stream
 Outlet

DRAINAGE LAKE

- Water Source
 - Streams
 - Groundwater
 - Precipitation
 - Runoff
- Stream Drained

IMPOUNDMENT

- A manmade lake
- Dammed River or Stream

OVERVIEW

- Unique Properties of Water
- Lake Types
- Physical, Chemical, Biological and Habitat Characteristics
- Technical Aspects

PHYSICAL CHARACTERISTICS

- Mixing / Stratification
- Lake Depth
- Retention Time / Flushing Rate
- Drainage Basin/ Lake Area Ratio
- Landscape Position
- Influence of Watershed Runoff

MIXING/ STRATIFICATION

LAKE DEPTH MATTERS

- Deep Lakes Stratify
- Shallow Lakes
 Continuous Nutrient Recycling

Lake Level vs Lake Volume

RETENTION TIME/ FLUSHING RATE

- How long would it take to fill a drained lake?
- Retention Time Matters
- Long Lake & Altoona
 - Long Lake, 7years
 - Lake Altoona, 22days

DRAINAGE BASIN/ LAKE AREA RATIO

- Seepage Lake- small
- Drainage Lake- large watershed
 - Seepage Lake w/ drainage area mapped Round Lake

LANDSCAPE POSITION

CHEMICAL CHARACTERISTICS

- Chemical Characteristics
- Limiting Nutrient Concept P vs N
- Lake 227

CHEMICAL CHARACTERISTICS

- Nutrients
 - P
 - N
- pH
- Hardness/ Alkalinity
- Dissolved Oxygen (optimum 5 ppm)

NUTRIENT FUNCTIONS

ELEMENT	AVAILABILITY	DEMAND	AVAILABILITY DEMAND	FUNCTION
Na	32	0.5	64	Cell membrane
Mg	22	1.4	16	Chlorophyll, energy transfer
Si	268	0.7	383	Cell wall (diatoms)
Р	1	1	1	DNA, RNA, ATP, enzymes
к	20	6	3	Enzyme activator
Ca	40	8	5	Cell membrane
Mn	0.9	0.3	3	Photosynthesis, enzymes
Fe	54	0.06	900	Enzymes
Co	0.02	0.0002	100	Vitamin B12
Cu	0.05	0.006	8	Enzymes
Zn	0.07	0.04	2	Enzyme activator
Мо	0.001	0.0004	3	Enzymes

CHEMICAL CHARACTERISTICS

NUTRIENT FUNCTIONS

ELEMENT	AVAILABILITY	DEMAND	AVAILABILITY DEMAND	FUNCTION
Na	32	0.5	64	Cell membrane
Mg	22	1.4	16	Chlorophyll, energy transfer
Si	268	0.7	383	Cell wall (diatoms)
Р	1	1	1	DNA, RNA, ATP, enzymes
К	20	6	3	Enzyme activator
Ca	40	8	5	Cell membrane
Mn	0.9	0.3	3	Photosynthesis, enzymes
Fe	54	0.06	900	Enzymes
Co	0.02	0.0002	100	Vitamin B12
Cu	0.05	0.006	8	Enzymes
Zn	0.07	0.04	2	Enzyme activator
Мо	0.001	0.0004	3	Enzymes

Source: The Biology of Lakes and Ponds, by Christer Bronmark and Lars-Anders Hansson

Phactoids: Importance of P to organisms

Phosphorus is a critical nutrient

- Genetic molecules: DNA, RNA
- Structural molecules: phospholipids in cell walls
- Energy metabolism: ATP
- **Every living organism needs phosphorus**

A little P goes a long way

1 Ib of P can produce 500 Ib of algae, and that P can be recycled many times

Phosphorus is less abundant than most other nutrients

- Both N and P tend to be high in demand by organisms, relative to their supply in the environment
- N is often the limiting nutrient in terrestrial and marine ecosystems (with P close behind...)
- But in lakes, P is nearly always the principal limiting nutrient

LIMITING NUTRIENT PRINCIPLE

...That Nutrient in Least Supply Relative to Plant Needs

N:P Ratio in plant Tissue 10:1

If the Ratio of N:P in Water is <10:1 Nitrogen Limited >15:1 Phosphorus Limited

PHOSPHORUS LIMITATION LAKE 227

TOTAL PHOSPHORUS/ CHLOROPHYLL a RELATIONSHIP

 Phosphorus causes algae to grow

Why Develop the Criteria?

- Obvious water quality problems in state caused by excess nutrient loading
- Numeric goals for protecting or restoring Recreational and Fish and Aquatic Life Uses
- EPA requirement

Specific Lake Criteria

- 2-story fishery lakes 15 ug/l
- Stratified seepage lakes 20 ug/l
- Stratified drainage lakes 30 ug/l
- Stratified reservoirs 30 ug/l
- Non-stratified lakes 40 ug/l
- Non-stratified reservoirs 40 ug/l

Ecoregions

BIOLOGICAL CHARACTERISTICS

- Viruses/ Bacteria/ Fungi
- Primary Producers Algae/ Macrophyte
- Zooplankton/ Inverts
- Fish

ALGAE

 Primary Energy Source for Invertebrates boototo

- Can be Nuisance and Human Health Issue
- Produce O₂

Human Health Concerns

Toxic algae

Common	human	symp	toms as	sociated	l with
blue-g	green a	lgae e	xposure	include	:

Respiratory	Dermatologic	Other
Sore throat	Itchy skin	Earache
Congestion	Red skin	Agitation
Cough	Blistering	Headache
Wheezing	Hives	Abdominal pain
Difficulty	Other Rash	Diarrhea
breathing		Vomiting
Eye irritation		Vertigo

Common animal symptoms associated with blue-green algae exposure:

Lethargy Vomiting Diarrhea Convulsions Difficulty breathing General weakness

http://dhs.wisconsin.gov/eh/bluegreenalgae/#NewProg

ZOOPLANKTON & AQUATIC INVERTEBRATES

Zooplankton Dragonfly

AQUATIC PLANTS

- Habitat
- Energy Dissipation
- O2 Producers

FISH

Planktivore Piscivore Benthivore

TROPHIC PYRAMID

Fish species vary relative to lake trophic status

Every change of 10 in the TSI corresponds to a doubling of a lake's algae biomass and a halving of water clarity.

Without habitat, they are gone

LAKE HABITAT ZONES

LAKE LITTORAL ZONE

Functions

- Intercepts Nutrients
- Refuge from Predators
- Nursery for Fish

Domestication of Wisconsin Lakes

Courtesy of MN DNR

Shoreland green frog trends

Fish grow ~3X faster in lakes with lots of woody habitat

From Schindler et al. 2000

ENVIRONMENTAL SIGNS OF DEGRADATION

TROPHIC STATE INDEX

LOSS OF WATER CLARITY

HYPOLIMNETIC DO DEPLETION

HARMFUL ALGAE BLOOMS

FISHERIES DEGRADATION

LEAVING A LEGACY

Help Protect Wisconsin's...

WATER RESOURCES.

PALEOLIMNOLGY

PALEOLIMNOLGY

SQUAW LAKE St. Croix County

ORGANIC MATTER (%)

Despite all this.....

Algal toxins A threat to both human and animal health

LAND USE AND WATERSHED IMPACTS

2) Land is a concentrated nutrient source

Empirical Watershed Models

Phosphorus export coefficients - developed based using monitoring data.

WISCONSIN VALUES

Land Cover	TP Export
	kg/ha/yr
High Density Urban	1.5
Row Crop Agriculture	1.0
Mixed Agriculture	0.8
Grass / Pasture	0.3
Medium Density Urban	0.5
Low Density Urban	0.1
Forested	0.09

Phosphorus transport

-- P is transported by runoff in both (1) dissolved [DP] and (2) particulate forms [PP].

-- GW-P is usually low, ~10-15 ppb

from Sturgul & Bundy 2004; UW-Madison & UW-Extension, Dept. of Nutrient & Pest Mgt.

RESIDENTIAL DEVLOPMENT

AIMP

SEPTIC

SURVEY

Figure 1. Schematic diagram of inputs and outputs used to calculate a P budget for the Lake Mendota watershed for 1995.

Chlorophyll-a interval frequency versus total phosphorus.

LAKE HABITAT ZONES

Without habitat, they are gone

Shoreland green frog trends

Fish grow ~3× faster in lakes with lots of woody habitat

Woody Habitat (no./km)

From Schindler et al. 2000

How do they get here?

- Ballast water
- Stocking
- Nursery industry
- Bait industry
- Aquarium trade
- Aquaculture

How do they spread?

Boaters
Anglers
Other water users
Natural dispersal

Why do we care?

- Economic impacts
 - Fishing industry, tourism, property values
- Ecological impacts
 Native fish, invertebrates, plants
 - **Recreational impacts**
 - Boating, angling, swimming

Wisconsin's AIS Program

Prevent introduction and limit the spread of aquatic invasive species

Program Goals

- Focus on containment
- Increase AIS awareness & responsible behaviors
- Strengthen partnerships

AIS Program Elements

- Education & Outreach
- Watercraft Inspection
- Citizen Lake Monitoring
- Purple Loosestrife Biological Control
- Aquatic Invasive Species Grants
- Research
- Rules to Prevent Spread

