Modeling ... What's the Use?

Paul McGinley Center for Watershed Science & Education UW Stevens Point

Center for Watershed Science and Education College of Natural Resources **University of Wisconsin-Stevens Point**

Lake Leaders 2014

What's a model

One definition:

A mathematical description to help visualize something

Model airplane

Example- General Circulation Model

What's a model

One definition: A mathematical description to help visualize something

Can this help us "visualize" how past actions have led to a current condition

or help us "visualize" how future actions could alter the current condition

Today.... 1) Watersheds and 2) Lakes & 3) Streams

- Functioning big picture arm waving & the development of "Conceptual" Models
- Modeling Approaches
 - Fundamentals
 - Examples (simple & not so simple)
 - Compare & contrast

Goal- Understand if these might be useful & what is an appropriate model

(and most important... not make a potentially confusing topic more confusing...)

Part 1 – Watersheds

Define- that area where the water drains to the outlet point of interest

Our Watershed Interest This Morning --- Water, Sediment & Nutrients (could be others)

Precipitation = ____ inches/yr

Precipitation = <u>32</u> inches/yr

Precipitation = <u>32</u> inches/yr

Precipitation = <u>32</u> inches/yr

Precipitation = <u>32</u> inches/yr

10 inches /year on 1 square mile... = 23,000,000 cubic feet /year!

Precipitation = <u>32</u> inches/yr

= 23,000,000 cubic feet /year! = 0.7 cubic foot every second!

Let's Model That for a lake at the outlet!

• We just did

• Water Budget

Water Entering the Lake Each Year = (10 in/year)*(Watershed Area)

Rule #1

"All models are wrong but some are useful"

George Box

- Useful?
 - -Residence time =
 - = Amount of Water in Lake

Rate Which Water Leaves Lake

- Useful?
 - -Say 10,000 acre lake, mean depth of 40 feet with a 150,000 acre watershed
 - –Residence time estimate =
 - = (1<u>0,000 acre)(40 feet mean depth)</u> (150,000 acre)(0.83 ft/yr)
 - = **3.2** years

Limitations

- Year-to-Year Variations?
- Different parts of the watershed have different response
 - Impervious surfaces
 - Compacted soil / raindrop impact

How can we improve this model?

- Spatial Variability
- Temporal Variability

• Of course this comes at a cost... is it necessary? Is it worth it?

Modeling the Land?

Very Simple

Annual Volume

Closely Related...Nutrient Movement

• Just talked about water movement on land

Next... <u>Nutrients Loss from Land</u> —then <u>Lakes & Streams</u>

Let's look at Phosphorus Movement

- Important Implications for Lakes & Streams
- Oligotrophic "few" "foods"
- Eutrophic "many" "foods"

Table 1. Completed trophic state index and its associated parameters.

TSI	Secchi disk (m)	Surface phosphorus (mg/m3)	Surface chlorophyll (mg/m ³)
0 10 20 30 40 50 60 70 80 90 100	64 32 16 8 4 2 1 0.5 0.25 0.12 0.062	0.75 1.5 36 12 24 48 96 192 384 768	0.04 0.12 0.34 0.94 2.6 6.4 20 56 154 427 1,183

http://www.secchidipin.org/trophic_state.htm

45,000 lb plant P 50,000 lb organic matter P 250,000 lbs soil P (top 6")

350,000 Ib P /sq mile

Adapted from Yanai, R.D., 1992. Phosphorus Budget of a 70-year-old northern hardwood forest Biogeochemistry 17:1-22

Phosphorus

/"liter"

40 microgram P /liter • Water Across Land = Phosphorus in the Water

Interesting Modeling Challenge

- Pathway that the water takes is important
- The soil & vegetation it contacts is important

- Higher Land Concentration--- More P
- More Surface Runoff Water More P

Modeling P Movement

- Let's consider two approaches
 - 1) every year the same, some adjustment for land use
 - 2) try to track the daily runoff / some characteristics of the land

Tale of Two Pathways

10 inch/year @ 0.02 mg/l < <u>0.01</u> <u>Ib/acre</u>/year

2 inch/year @ 1 mg/I = <u>0.45</u> <u>lb/acre</u> /year

> (+ 9 inch/yr @ 0.02 mg/l)

"Phosphorus Export Coefficients" (pounds/acre-year)

	Low	Most Likely	High
Agriculture (Mixed)	0.3	0.8	1.4
Med Density Urban	0.3	0.5	0.8
Pasture	0.1	0.3	0.5
Forest	0.05	0.09	0.18
Atmospheric (lake surface)	0.1	0.3	0.5

Adapted from WiLMS, Wisconsin Lake Modeling Suite http://dnr.wi.gov/lakes/model/

Useful?

- Estimate the long term average P transfer from a watershed to the lake
 - 90,000 acres Row Crop
 - 90,000 ac*0.8 lb/ac-year = 72,000 lbs/year
 - 30,000 acres Pasture/Grass
 - 30,000 ac*0.3 lb/ac-year = 9,000 lbs/year
 - 30,000 acres Med Den Urban
 - 30,000 ac*0.5 lb/ac-year = 15,000 lbs/year

- TOTAL = 96,000 lbs/year

Challenges: Annual Variations in P to Lake!

• P Load (Ib) to Lake (Lathrop and Panuska)

Important

• But what do we want to model?

- Water level, Algal density, Fish, Phosphorus Concentration

WATER

Our First Model

• Goal– predict the P concentration

Given

- The amount of P entering the lake
- The amount of water entering the lake

Concentration of $P = C_P = Mass$ of Phosphorus /Volume of Water

Let's give this a try

- 10,000 acre lake
- 150,000 acre watershed

Recall our simple watershed model...

- 96,000 lb/year P
- 125,000 acre-ft/year water

"Simple Model"

• Concentration of P

= Mass of P / Volume of Water

= 285 ug/l

Take a look at some data

Not a very good model

• Why?

• What happens to P in a lake?

 Another observation on modeling

 "Everything should be made as simple as possible, but no simpler" A. Einstein

Historical Note– 1960s... higher "Inflow P Conc" OK if you have a longer residence time

Second Model

"mean total P concentration is amount of phosphorus divided by volume of water and diminished by retention term as P apparently lost to sediments" (Nurnberg, 1984)

Second Model

"mean total P concentration is amount of phosphorus divided by volume of water and diminished by retention term as P apparently lost to sediments" (Nurnberg, 1984)

• Uniform ("steady-state") Conditions

- The P concentration doesn't change with time
- The amount of P in the lake is constant

- What goes in must be equal to what goes out

P Into Lake		P Flowing		Ρ
		Out of	+	Lost
	=	Lake		То
		Lake		"Settling"

Uniform ("steady-state") Conditions

The P concentration doesn't change with time The amount of P in the lake is constant

With this added

Let's give this a try

- 10,000 acre lake
- 150,000 acre watershed

- 96,000 lb/year P
- 125,000 acre-feet water/year
- 40,500,000 m2 lake surface
- 10 meter/year settling velocity

Our "Less Simple Model"

Concentration of P

= 79 ug/l (better?)

• Useful?

What about this Steady-State Assumption?

• Is that an important assumption?

• What about concentrations that vary during the growing season

• What about long-term trends or large year-toyear variations?

What about the P concentration in this lake?

Lake Response Model?

• Useful?

But we can make this very complex!

Lake Model with changing daily inputs and spatial variations within the lake...

Select onth 2	tor En De 13		1	Create Profile												dvan Profil				Simulated 7 Julian Da Days	t Top Elev y for Output:				Sho	w M	onite	oring	Resi	ılts		M	Ionitoring Iessured	Top Ek	••	4427 344.6		2/13/200	6 BOD _{back} BOD _{event} BOD _{settir}	
										Riv	er Mile	abow	Dam																										are month	
	Тор																					Top of																		
	Ce		Top of Cell	19	18	17	16	15 1	14 1	3 12	2 11	10	9	8 7	6	5	4	3	2	1		Cell	19	18	17	16	15	14	13	12	11	10	9	8 1	76	5	4	3	2 1	т
1	361	.7	1153.7																			1153.7																		D
	361		1152.1																			1152.1																		U
	350		1150.4 1148.8																			1150.4 1148.8																		s
	349		1140.0																			1147.1																		
6	349	12	1145.5																			1145.5																		
	348		1143.9																			1143.9																		
	348		1142.2 1140.6																			1142.2 1140.6																		
	347		1138.9																			1138.9																		
11	346	17	1137.3																			1137.3																		
12			1135.7																			1135.7																		
	345		1134.0 1132.4	8	8	8	8	7	8 5	4	3	2	1	1 0	0	0	0	0	0			1134.0 1132.4																		
15			1130.7																			1130.7																		
16	344	12	1129.1																			1129.1																		
17			1127.5	8		8																1127.5		9							3									
18 19			1125.8 1124.2	•	8	8			8 8													1125.8 1124.2		9							3									
20			1122.5																			1122.5		9							1									
21			1120.9				4	4														1120.9														2				
22			1119.3						4													1119.3												-						
23 24			1117.6 1116.0																			1117.6 1116.0																		
25			1114.3								- 4	3										1114.3														0	0			
	330		1112.7										2									1112.7																	0	
27			1111.0 1109.4											1 0								11111.0 1109.4																	0 0	
28	338 337		1109.4											U	0							1109.4																		
30			1106.1														0					1106.1																		
31	338	1.7	1104.5															0				1104.5																		
32			1102.8																0			1102.8																		
33 34			1101.2 1099.6																			1101.2 1099.6																		
35			1097.9																			1097.9																		
38			1096.3																			1096.3																		
37	333		1094.6 1093.0																			1094.6 1093.0																		
- 20	303		1033.0																			1033.0																		

Summary Discussion

- Watershed
 - Water Budget
 - Phosphorus Budget

• Lake

- Concentrations
- Response

• Simple

- Reduce Spatial
 Variations
- Long Term Averages
- Complex
 - Time and Space
 Variations
 - Daily / Yearly
 Variations

Questions

Paul McGinley UW-Stevens Point pmcginle@uwsp.edu (715) 346-4501

Center for Watershed Science and Education College of Natural Resources **University of Wisconsin - Stevens Point**

= 80 lb/ 325 million gallons =

= 80 lb/ 3 billion lbs water=

= 80 lb/ 3 billion lbs water= 27 ppb

Why Model?

- Groundwater flow– where water is coming from?
- Lake concentration —what if we change the amount added?
- Watershed modeling
 – can watershed changes help and by how much?
- In-Lake Restoration "experiment" with treatment, diversions etc.

Watershed Models

32"

0"

22"

Land is a concentrated nutrient source

Complex Model: Simulate every storm, interaction with ground, conveyance to channel, transport to lake Simple Model: Assign annual transfer rate to different land uses

Lake Models

Phosphorus Concentration (µg/l)	Productivity
10	Low (Oligotrophic)
10-20	Medium (Mesotrophic)
Greater than 20	High (Eutrophic)

Lake Response Model?

Phosphorus/Algae Response Curve

Application to Portage County

Modeling the Land?

32" Land **Follow Every drop**

Annual Volume x Average Concentration

Very Simple

Very Complex

Groundwater Inputs (groundwater modeling)

Portage County Model

Relatively Simple Lake Model

 $C = \frac{W^2}{A_S v_S + Q^2}$

Annual Phosphorus = P-Undeveloped + P-Developed

Amount of Water

"Settling Factor"

Portage County Model

Use Lake Phosphorus to Predict Lake Chlorophyll

Portage County Model

Phosphorus/Algae Response Curve

Questions

WATERSHED DELINEATION DISCUSSION

Watershed Delineation

- Topography
- Groundwater Complications
- Tools
 - WDNR Surface Water Data Viewer
 - New WDNR Tools (soon in PRESTO)

L-THIA

Tools Help

}• ⊘• ⊚• @• "N

Metadata

m-in to your area.

Search

button and click on watershed you our location is sent ine and the point is calculated; -THIA model on it

c latitude- longitude utton below , us sign must be o -87.00000 and 00000 to 42.00000

16 N coordinates in K should be within and Y within 000

WDNR SWDV (Surface Water Data Viewer)

Http://dnrmaps.wi.gov/sl/?Viewer=SWDV	ー 0 <mark>- ×</mark> ・ 0 - × <i>p</i> L. <i>p</i> W. (). 5. <i>p</i> L. () () () () () () () () () () () () ()
File Edit View Favorites Tools Help	
Surface Water Data Viewer	Search for map features Q
🗎 🎒 Basic Tools Identify Tools Drawing Tools Mea	uring Tools Find Location Maps & Data Help
Home Show Show Layers Legend Home Map Layers Navigation	Wap Scale: 1: 64,938 Map Scale: 1: 64,938 <th< th=""></th<>
Map Layers X	< I want to
Map Theme: Surface Water (default)	MONROE COUNTY
Show Legend Filter * ✓ Fisheries Management • • ✓ Aquatic Invasive Species	
 Water Resources Watersheds Great Lakes & Mississippi Basins DNR Water Management Units Intermittent Streams Stream Order WI Hydro Data-Plus Catchments 	Imi Lat:
	Terms of Use DNR Website SWIMS Comments

1mi

2km

Mud Lake Tonahawk

Big

Lake Cart

Lake

Lat:

Lon:

Terms of Use DNR Website | SWIMS | Comments |

