Water From a Global Perspective

Water covers ~70% of the earth’s surface
97.1% of that is in the oceans
2.24% frozen in ice caps/glaciers
0.61% is groundwater

So less than 0.05% of global water is surface freshwater

40% of which is in the Great Lakes and Lake Baikal

a tiny fraction of all freshwater is in rivers and streams

So why do (or should) we care about streams?
Stream Ecology? What’s that?

Ecology = the study of how organisms are related to their environment and to other organisms.
Stream Ecology? What’s that?

Ecology = the study of how organisms are related to their environment and to other organisms.
Stream Biota

Big Fish

Small Fish

Invertebrates

Algae
5 Factors Influencing Stream Communities

- Light
- Temperature
- Flow
- Dissolved Oxygen
- pH
Where streams come from

1. Direct Input
2. Overland Flow
3. Shallow Sub-Surface Flow
4. Groundwater Flow
Flow Terminology

Velocity: simply the speed of water as it travels from point A to point B (distance/time)

Discharge: the amount of water that passes a given point over time (volume/time)

Power: the ability to do work (e.g., transport sediment, move boulders, etc.)
- Power typically increases with increasing velocity and/or discharge

Hydrographs: graphs used to examine changes in discharge over time
Hydrograph of a Storm Event

- **Discharge**
- **Time (days)**

- **Storm**
- **Rising Limb**
- **Peak**
- **Recession Limb**
- **(Base Flow)**
Habitats in Stream Systems

- Pools
- Riffles
- Waterfalls
- Glides/Runs
- Rapids/Cascades
Why aren’t streams all straight?

1. Valleys and floodplains are not smooth, level, or evenly sloped.

2. Soils, sediments, and deposits in floodplains are highly variable.
 - i.e. resistance is not consistent

3. Streams will always take the path of least resistance, not necessarily the most direct
Dynamics of The Meander

Erosion

Deposition

Deposition

Erosion
The Meander

Meanders:
1. Control flow rates
2. Provide habitat
3. Are natural and dynamic
Flowing water can be classified into 2 types:

Laminar Flow: Smooth flow that is like parallel sheets moving together.

![Laminar Flow Diagram](image)

Turbulent Flow: Chaotic flow that is rough and unorganized. (most common)

![Turbulent Flow Diagram](image)
Organisms and Flow

To deal with drag and lifting forces of turbulent flow, organisms may:

Adapt “streamlined” body forms to create more laminar-like flows

Adapt body forms or life styles that use the low velocity layer near the bottom.
Sunlight is the ultimate source of energy for all stream communities.

- However, this energy enters stream food webs via 2 major pathways:

Autochthonous Production (within the stream)

Allochthonous Production (from outside the stream)
Energy Pathways in Streams

Autochthonous Production (algae and aquatic plants)

Allochthonous Production (input from terrestrial plants)
Factors influencing light for in-stream production

Stream-side vegetation
(but used for allochthonous production and regulates temperatures)

Time of day

Water depth

Season & climate

Water clarity

Surface roughness
Turbidity & Water Clarity

Turbidity is generally a measure of the suspended particles in water (living and non-living).

Water Clarity is used to describe turbidity + the presence of dissolved compounds (i.e. color)

Water Clarity influences:
- The ability of sunlight to reach autochthonous producers
- The effectiveness of visual predators
- Temperature
Water Clarity is influenced by:

- Erosion
- Flows
- Litter-fall
- Underlying geology
- Suspended algae
- Biotic community
Temperature

Temperature is important because it regulates:
- rate of chemical reactions
- amount of gases and solutes dissolved in water
- metabolic rates of stream biota
- and more...

Stream temperature is influenced by:

Sunlight
- Riparian vegetation
- Groundwater inputs
- Width and depth
- Upstream factors
- Water clarity
Daily Patterns of Stream Temperature

- Open Site; Without Spring Inputs
- Shaded or Spring Influenced Site

Water Temperature (°C)

Time (h)
Range in Daily Temperature Going Downstream

Maximum Daily Temperature Range (°C)

Stream Size (order)

(Headwaters) (Mississippi)

From Vannote & Sweeney (1980)
Temperature range and organisms

Stenotherms (often called “cold water species”) exist in a narrow range of temperatures.
- e.g., Salmon and trout

Eurytherms (often called “warm water species”) may exist in a wide range of temperatures.
- e.g., Bass and suckers
Dissolved Oxygen

Dissolved oxygen in a stream is largely a function of:

Air exchange at the water surface
- Roughness INCREASES oxygen exchange

Biological activity
- Daytime photosynthesis INCREASES oxygen
- Nighttime respiration from all organisms, DECREASES oxygen

Water temperature
- The colder the water the more oxygen can be dissolved
Dissolved Oxygen Saturation

% Saturation compares the amount of oxygen that is dissolved vs the maximum amount that could be dissolved at a given temperature and pressure

100% means the water is well-aerated

<100% means more oxygen is being used than added

Supersaturation (>100%) occurs when production of oxygen in the water exceeds the rate of loss from the water.
Daily Patterns of Dissolved Oxygen

- **Open Site**
- **Shaded Site**

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>D.O. Saturation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24:00</td>
<td>70</td>
</tr>
<tr>
<td>6:00</td>
<td>80</td>
</tr>
<tr>
<td>12:00</td>
<td>100</td>
</tr>
<tr>
<td>18:00</td>
<td>110</td>
</tr>
<tr>
<td>24:00</td>
<td>120</td>
</tr>
</tbody>
</table>
pH

Measure a liquid’s acidity or alkalinity depending on the amount of Hydrogen Ions (H^+).

Water naturally exists in a balance:

H_2O (water) \leftrightarrow H^+ (Hydrogen ions) \leftrightarrow OH^- (Hydroxide ions)

(mostly this) \leftrightarrow (some of these)
- **Acids** have high concentrations of H$^+$

- **Bases** have low concentrations of H$^+$

The pH scale goes from 0 to 14, where 7 represents pure neutral water.
Adding acids (rain, pollution, etc.) increases the amount of H^+, decreasing pH.

- Streams naturally exist between pH 6-8
- At 6 and below, things get rough...

What does pH affect?
- rate of chemical reactions
- amount of materials dissolved in water
- amount of nutrients available to algae
- general health/performance of organisms
5 Factors Influencing Stream Communities

- Light
- Temperature
- Flow
- pH
- Dissolved Oxygen
Some Big Picture Take-Home Messages
Streams are closely tied to surrounding riparian landscape

- Shade/microclimate
- Bank stability
- Filters runoff from landscape
- Flood/flow control
- Provides energy sources to aquatic biota
- Aquatic habitat (undercut banks, root wads)
- Wood inputs
- Habitat for semi-aquatic species
Streams Operate in 4 Dimensions

- Lateral
- Longitudinal
- Vertical

...and TIME
Streams are dynamic!

Stream ecologists and managers must consider how streams change:
- in **SPACE**
- in **TIME**
Streams are dynamic!

Stream ecologists and managers must consider how streams change:

- in **SPACE**
- in **TIME**
Streams are dynamic!

Stream ecologists and managers must consider how streams change:
- in **SPACE**
- in **TIME**
“Be The Fish”