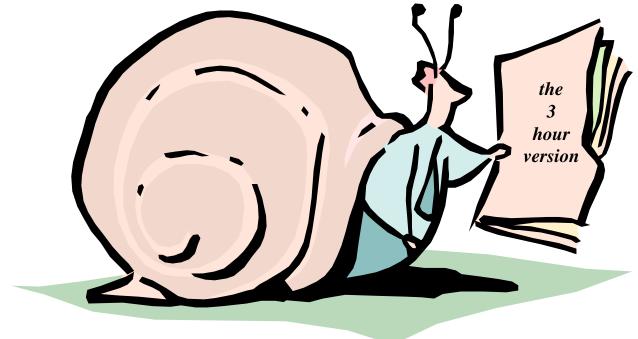
Wisconsin Lakes PreConvention Workshop

Lake Eutrophication Modeling and WiLMS

Paul McGinley & Nancy Turyk Center for Watershed Science & Education UW-Stevens Point


<u>Tentative Outline/Approach</u>

- Introductions
- Brief Overview Eutrophication
- OuickStart with WiLMS
- Introduce & discuss additional details as we work through a few examples
- Other Models
- Time for your projects
- <u>Please question / interrupt / stop us!</u>
- <u>Couple of Breaks (but feel free to move around!)</u>

Acknowledgements

- John Panuska, WDNR / now UW-Extension
- Jeff Kreider, WDNR
- DNR & UW Researchers
- Matt Diebel and Aaron Ruesch
- Many Lake Associations, WDNR, USGS, staff and students in the College of Natural Resources at UW-SP

- This is only a few hours / new workshop
- We aren't discussing everything...
- Some background /Use WiLMS
- Context with respect to other models
- Learn more about your needs / suggestions for developing this course

Introductions

- Name / Affiliation / Lake or Project etc
- What do you hope to get out of the next few hours?
- How might / do you use eutrophication modeling?

Eutrophication

- "Process of an ecosystem becoming more productive by nutrient enrichment stimulating primary producers"
 - Walter Dodds, *Freshwater Ecology*
- Cultural eutrophication- nutrient input increased by humans

Trophic State

- Level of ecosystem productivity
- Oligotrophic -"few" "foods"
- Eutrophic "many" "foods"

▲ NEWS | SPORTS | A & E | BUSINESS | OPINION | OUR TOWNS Algae's lake effect reveals pea green disaster

Rapid deterioration creates concern for Toledo community

Reddit

C

С

Ν

BY TOM HENRY BLADE STAFF WRITER

Share

Tweet

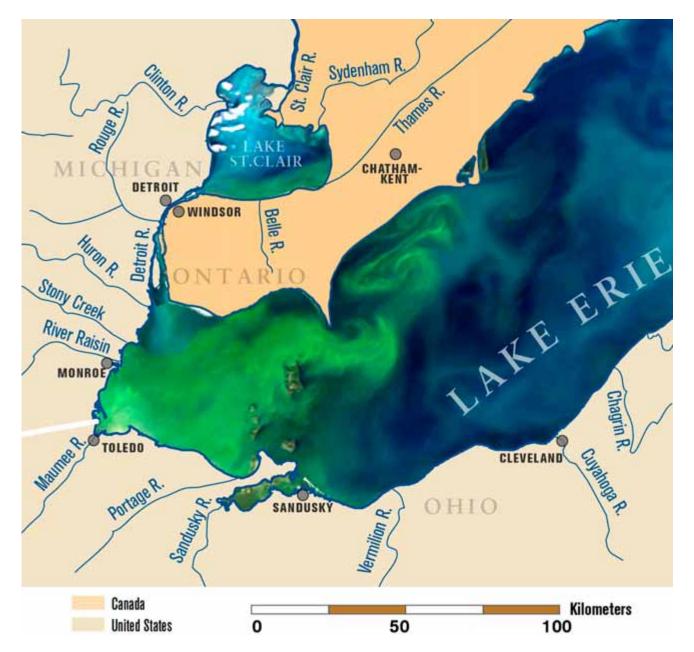
185

Shane Gaghen of Oregon holds a glass of algae filled Lake Erie water near the Toledo water intake crib on Sunday. The National Wildlife Federation conducted a media boat tour of the area.

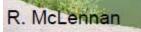
THE BLADE/DAVE ZAPOTOSKY Enlarge | Buy This Photo

The most telling sign of western Lake Erie's sickness comes from an up-close view of the putrid, bright green algae surrounding Toledo's water-intake crib, not from the multiple updates provided by public officials in front of television cameras outside of the Lucas County Emergency Services Building.

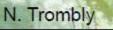
Pin it


di

The lake's rapid deterioration 2 miles off the Toledo shoreline created a gripping sight on Sunday for about 20 people — a combination of journalists, elected officials, and environmentalists — aboard a vessel


ρ

Email



Sept 3, 2011 MODIS Satellite Image on Map

But you don't have to go to Toledo to see algae

J. Williamson

Williameo

Implications of Trophic State

- Biomass quantity
- Types of organisms
- Light penetration
- Dissolved oxygen
- Algal toxins

Measures of Trophic State

- Fish Biomass
- Algal Concentration
- Nutrient Concentrations
 - Phosphorus

Note Units mg/m³ = μg/liter

Table 1. Completed trophic state index and its associated parameters.

Secchi disk (m)	Surface phosphorus (mg/m3)	Surface chlorophyll (mg/m ³)		
64	0.75	0.04		
32		0.12		
16	3	0.34		
8	6	0.94		
4	12	2.6		
2	24	6.4		
1	48	20		
	<u>disk (m)</u> 64	Secchi phosphorus disk (m) (mg/m3) 64 0.75 32 1.5 16 3 8 6		

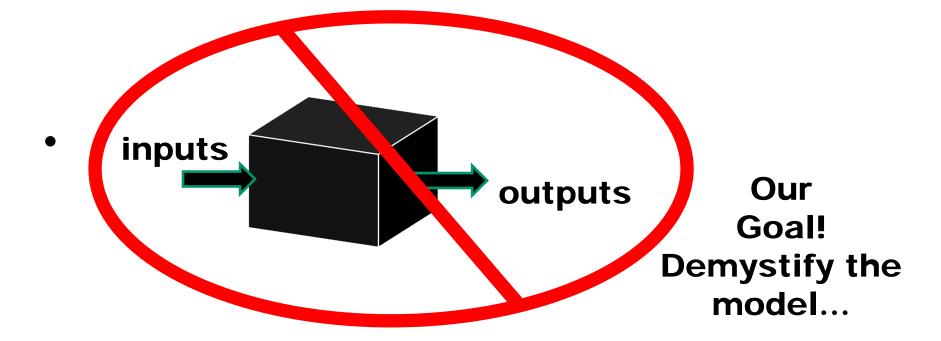
http://www.secchidipin.org/trophic_state.htm

Eutrophication Modeling

- Why?
 - Understand controls over the trophic condition
 - Evaluate alternatives that influence trophic status

Models

 A mathematical description to help visualize something



 "All models are wrong but some are useful" --George Box

Models

• A mathematical description to help visualize something

Our First Model

Goal– predict the P concentration

Given

- Lake characteristics
- Watershed characteristics

Model I

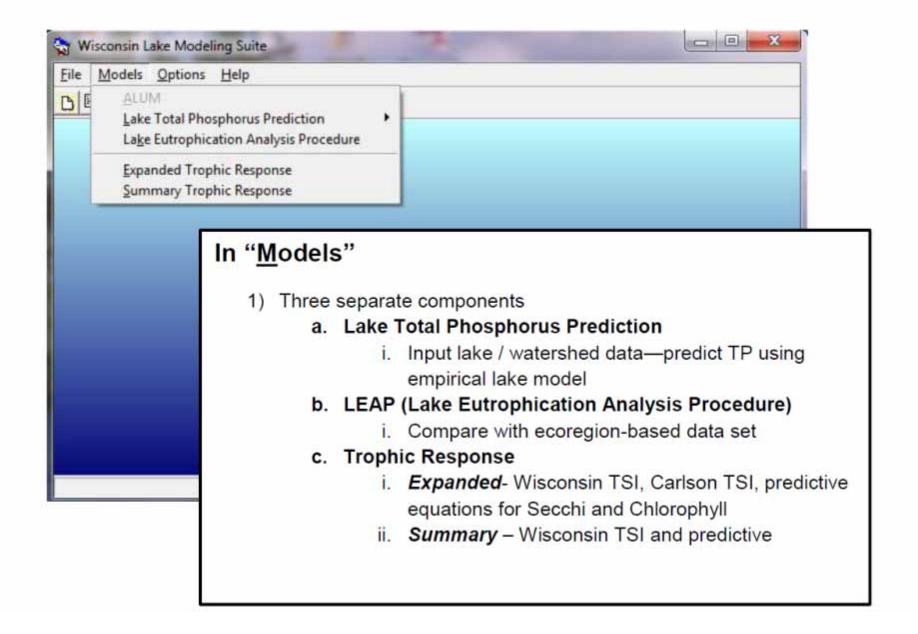
- Lake
 - Walworth Co
 - 5000 acres, Mean Depth 60 feet
- Watershed
 - 10,000 acres, 50% Mixed Ag (Pasture & Row Crops), 50% Forest
- Estimate lake phosphorus concentration

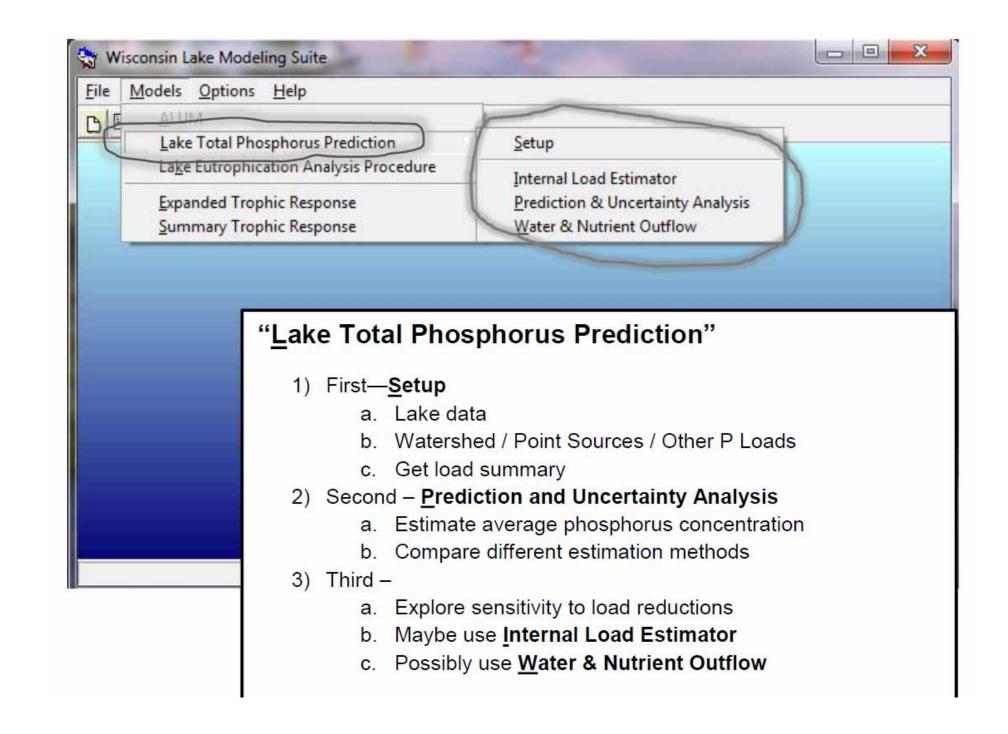
How? Water Phosphorus Entering Entering Lake Phosphorus

Brings us to WiLMS

- A Lake Eutrophication Model
- Combine Lake & Watershed to Estimate lake P concentration

WiLMS

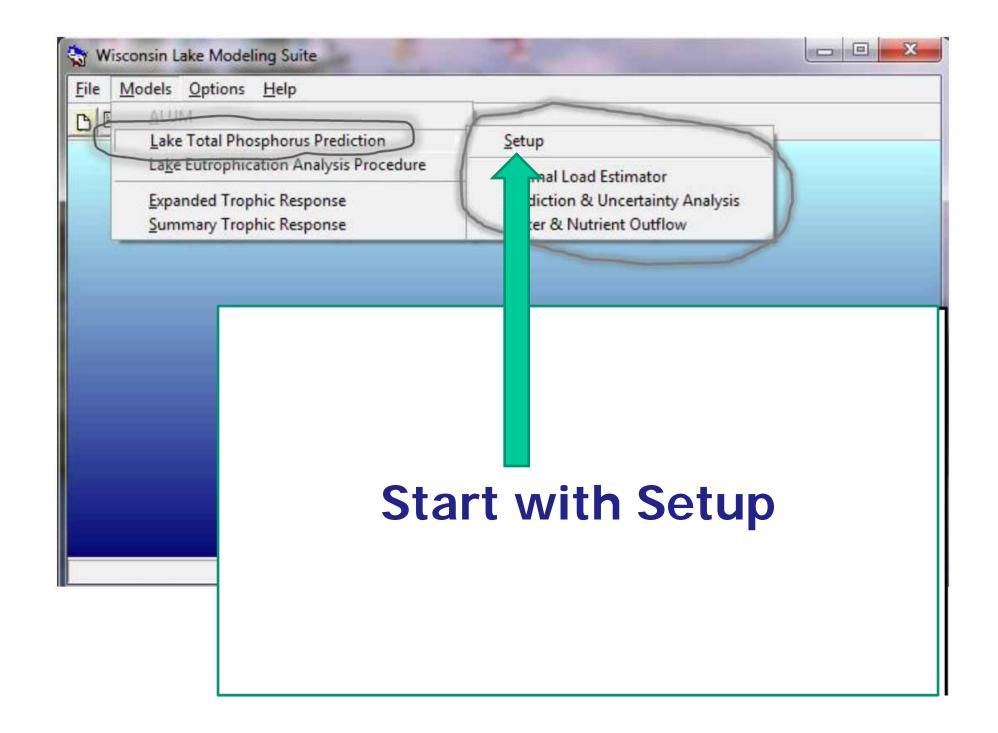

Microsoft System Center 2012

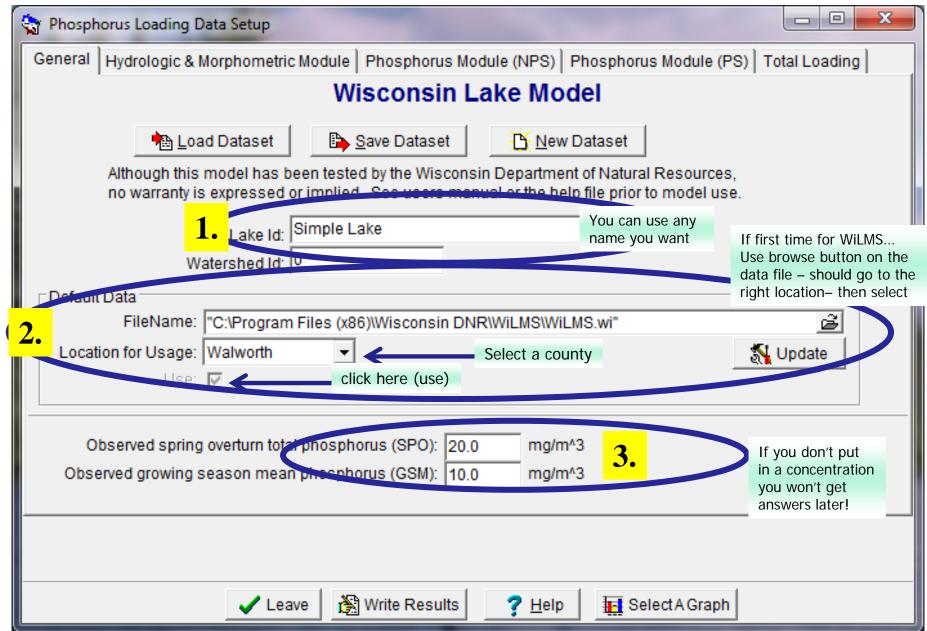

Q

NoteTab Light Python 2.7 OuickTime

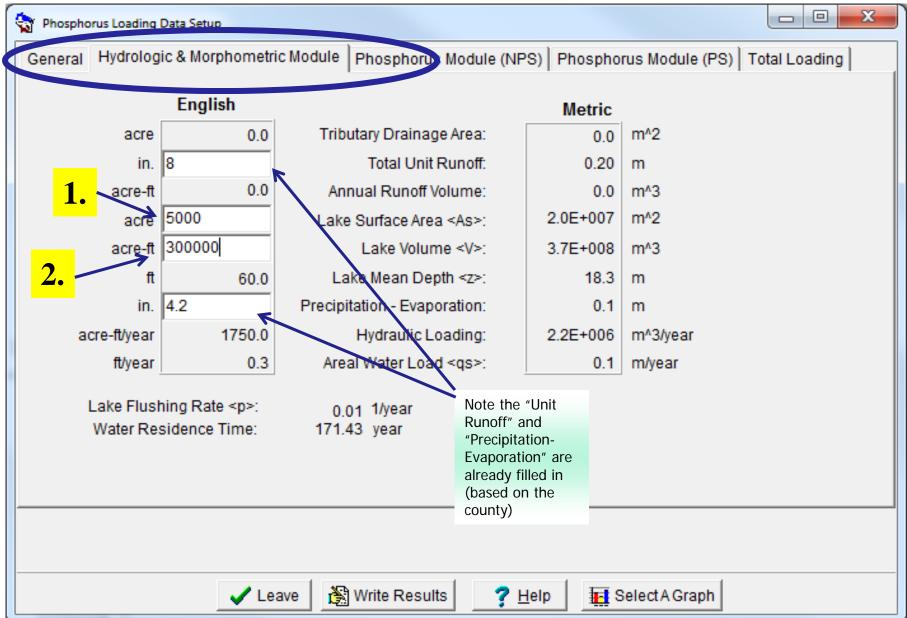
- 1. Download from WDNR <u>http://dnr.wi.gov/lakes/model/</u>
- 2. Installed usually in
 - a. "All Programs"
 - i. "Wisconsin DNR"
 - 1. WiLMS

S Wisconsin Lake Modeling Suite	📕 SharePoint
Ele Models Options Help	 SigmaPlot Startup UWSP Application Center Wisconsin DNR WiLMS WiLMS Help WiLMS WiLMS
	4 Back
	Search programs and files

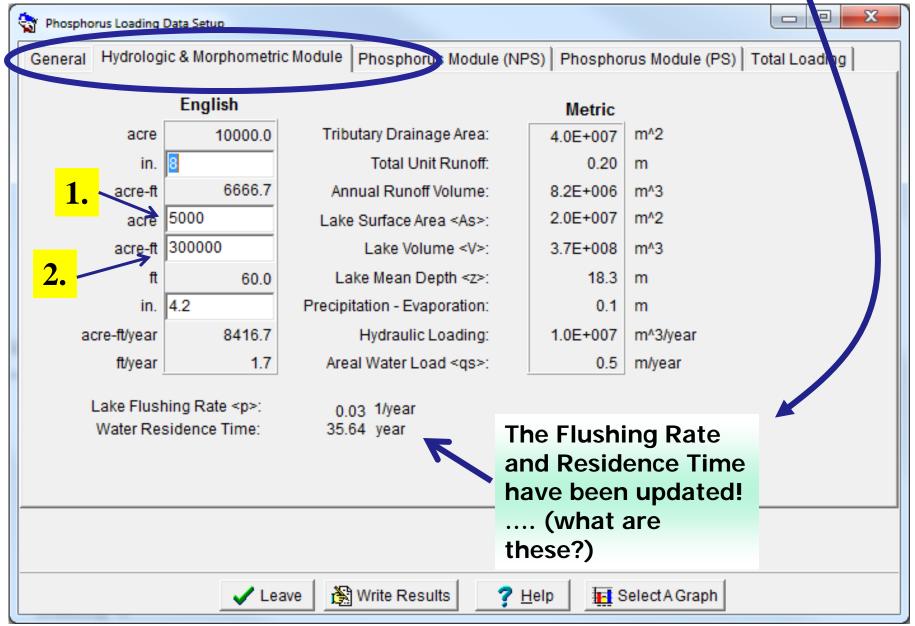



Model I

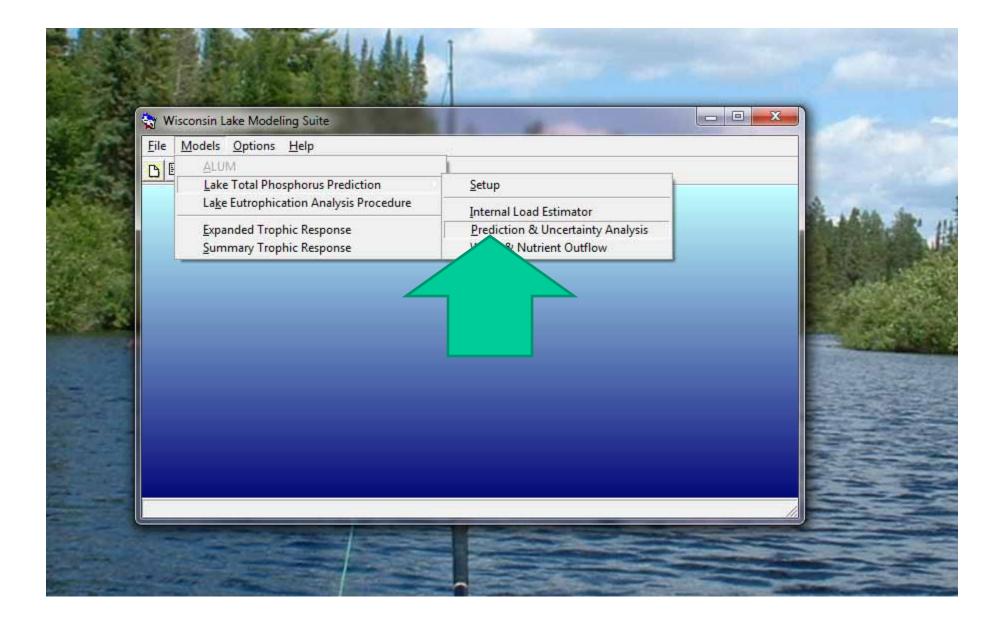
- Lake
 - Walworth Co


- Inguiste kan sente eges
- 5000 acres, Mean Depth 60 feet
- Watershed
 - 10,000 acres, 50% Mixed Ag (Pasture & Row Crops), 50% Forest
- Estimate lake phosphorus concentration

General Tab



Hydrologic and Morphometric Tab


Reset Defaults 10000.0 Total Drainage Area Assigned A Land Cover										
<mark>_I.</mark> \	Loa ding (kg/ha/year)Loa ding (kg-yea r)									
Land Use	Area (acre)	Low	Most Likely	High	Loading %	Low	Most Likely	High		
Row Crop AG	0.0	0.50	1.00	3.00	0.0	0	0	0		
Mixed AG	5000.0	0.30	0.80	1.40	67.2	607	1619	2833		
Pasture/Grass	0.0	0.10	0.30	0.50	0.0	0	0	0		
HD Urban (1/8 Ac)	0.0	1.00	2. 1.50	2.00	0.0	0	0	0		
MD Urban (1/4 Ac)	0.0	0.30		0.80	0.0	0	0	0		
Rural Res (>1 Ac)	0.0	0.05	0.10	0.25	0.0	0	0	0		
Wetlands	0.0	0.10	0.10	0.10	0.0	0	0	0		
Forest	5000.0	0.05	0.09	0.18	7.6	101	182	364		
User Defined 1	0.0	0.00	0.00	0.00	0.0	0	0	0		
User Defined 2	0.0	0.00	0.00	0.00	0.0	0	0	0		
User Defined 3	0.0	0.00	0.00	0.00	0.0	0	0	0		
User Defined 4	0.0	0.00	0.00	0.00	0.0	0	0	0		
User Defined 5	0.0	0.00	0.00	0.00	0.0	0	0	0		
User Defined 6	0.0	0.00	0.00	0.00	0.0	0	0	0		
Laka Surfana	5000.0	0.10	0.30	1.00	25.2	202	607	2024		
% NPS Change:	0% · · ·	0 -80 -70	-60 -50 -40	-30 -20 -11	, , , , , , , , , , , , , , , , , , ,	, , , , , , 0 30 40	50 60 70	80 90 10		

Now Go Back to Hydrologic and Morphometric Tab

Leave... Save

🔄 Save Dataset					x
Save in:	\mu WiLMS		•	← 🛍 📸 🕶 -	
C.	Name	~		Date modified	Туре
Recent Places	Example Simple			5/1/2003 11:42 AM 4/22/2015 1:40 PM	Surfer Wo Surfer Wo
-					
Desktop					
Libraries					
Computer					
Network					
	•				۴
	File name:	Simple		•	Save
	Save as type:	Data Files (*.dat)		•	Cancel

Observed spring overturn total phosphorus Observed growing season mean phosphorus Back calculation for SPO total phos Back calculation GSM phos	(CSM): phorus: 0.0		Est.	nberg Model In Gross Int. Loa 0 kg Confidence Rai	ding:					
Lake Phosphorus Model	Low Total P (mg/m^3)	Most Likely Total P (mg/m^3)	High Total P ng/m^3)	Predicted -Observed (mg/m^3)	% Dif.	Confidence Lower Bound	Confidence Upper Bound	Parameter Fit?	Back Calculation (kg/year)	Model Type
Walker, 1987 Reservoir	11	30	65	20	200	16	54	Tw	0	GSM
Canfield-Bachmann, 1981 Natural Lake	9	16	25	6	60	5	46	FIT	1	GSM
Canfield-Bachmann, 1981 Artificial Lal e	11	18	25	8	80	6	52	FIT	1	GSM
Rechow, 1979 General	4	10	21	0	0	5	18	qs	0	GSM
Rechow, 1977 Anoxic	12	32	70	22	220	17	57	FIT	0	GSM
Rechow, 1977 water load<50m/year	4	10	21	0	0	5	18	FIT	0	GSM
Rechow, 1977 water load>50m/year	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Walker, 1977 General	17	45	97	25	125	20	86	FIT	0	SPO
/ollenweider, 1982 Combined OECD	12	27	52	12	80	12	51	FIT	0	ANN
Dillon-Rigler-Kirchner	20	54	117	34	170	29	97	Pqsp	0	SPO
/ollenweider, 1982 Shallow Lake/Res.	9	22	44	7	47	10	42	FIT	0	ANN
Larsen-Mercier, 1976	13	33	72	13	65	19	59	P Pin	0	SPO
Nurnberg, 1984 Oxic	17	4	95	34	340	21	83	FIT	0	ANN

1) This is a "Mass Balance" or "Empirical Regression" – Type Eutrophication Model

- 2) Not... simulating daily / weekly / monthly / yearto-year variations in watershed or lake P
- *3) Not... simulating water movement within lake, sediment resuspension*
- 4) Not... simulating algae growth, zooplankton, fish

1) This is a "Mass Balance" or "Empirical Regression" –Type Eutrophication Model

2) Not... simulating daily / weekly / monthly / yearto-year variations in watershed or lake P

3) Not... simulating water povement within lake, sediment resuspension Dynamic Models, Short

4) Not... simulating alga

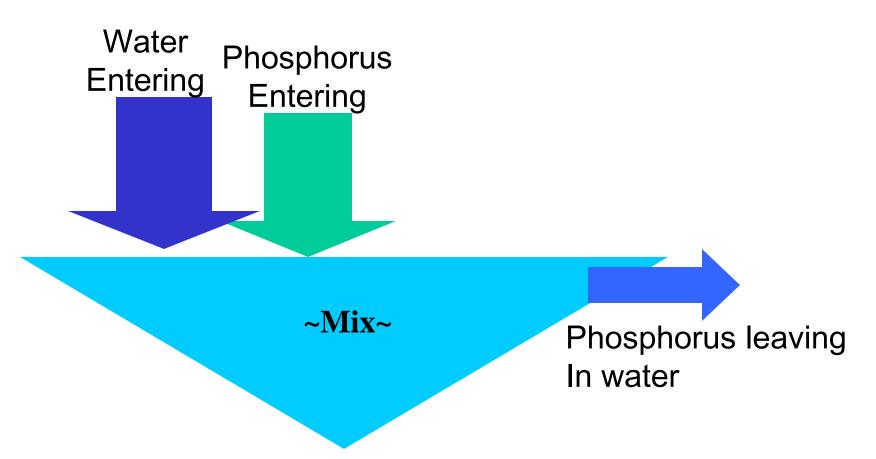
Dynamic Models, Short Time Step Models (e.g., SWAT)

- 1) This is a "Mass Balance" or "Empirical Regression" – Type Eutrophication Model
- 2) Not... simulating daily / weekly / monthly / yearto-year variations in watershed or lake P
- *3) Not... simulating water movement within lake, sediment resuspension*[°] •
- 4) Not... simulating algae gr

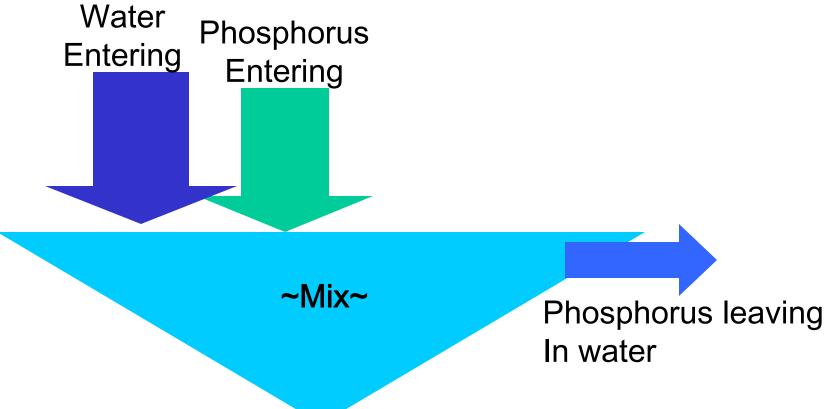
Hydrodynamic Models (CEQUAL), Shallow Lake Models (PCLake)

- 1) This is a "Mass Balance" or "Empirical Regression" – Type Eutrophication Model
- 2) Not... simulating daily / AQUATOX, CE-QUAL-W2, HEC-RAS/NSM etc.
 3) Not... simulating water sediment resuspension
- 4) Not... simulating algae growth, zooplankton, fish

Let's take a closer look at these "Steady-State Mass Balance" "Empirical Regression" Type Models


Backup....Model 0

Goal– predict the P concentration


Given

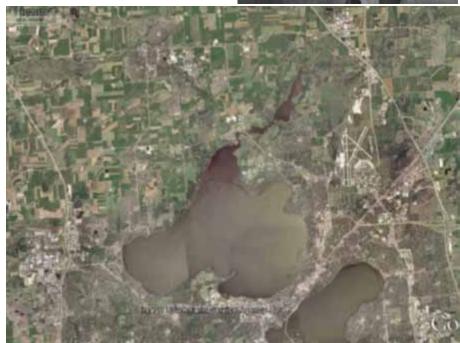
- The amount of P entering the lake
- The amount of water entering the lake

Schematic View

How does this calculate concentration?

Concentration of $P = C_P =$

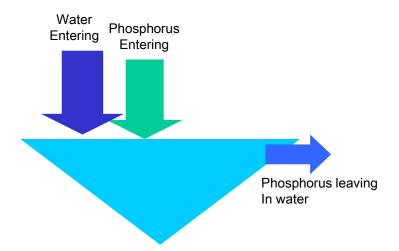
= Mass of Phosphorus divided by the Volume of Water


Let's give this another try

- 10,000 acre lake
- 150,000 acre watershed

Assume (more on this later)

- 34,000 kg/year P
- 150,000,000 m3/year water



Let's give this a try

- 10,000 acre lake
- 150,000 acre watershed

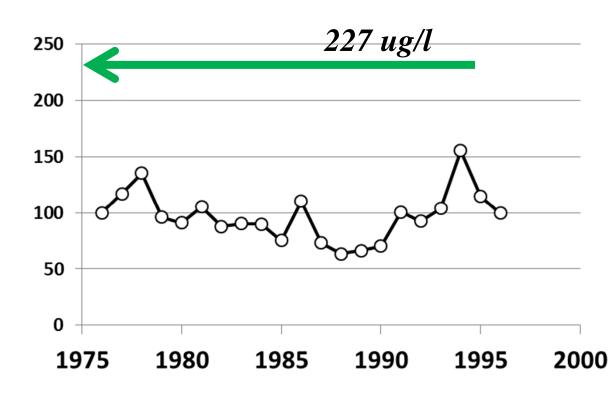
Assume (more on this later)

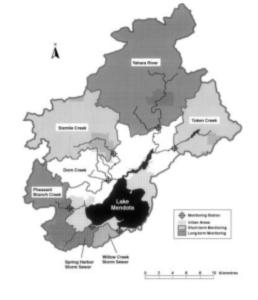
- 34,000 kg/year P
- 150,000,000 m3/year water

"Simple Model O"

• C_P = Concentration of P

•
$$C_P = \frac{Mass \ of \ P}{Volume \ of \ Water}$$


•
$$C_P = \frac{34,000 \, kg \, P/yr}{150,000,000 \, m3/yr}$$

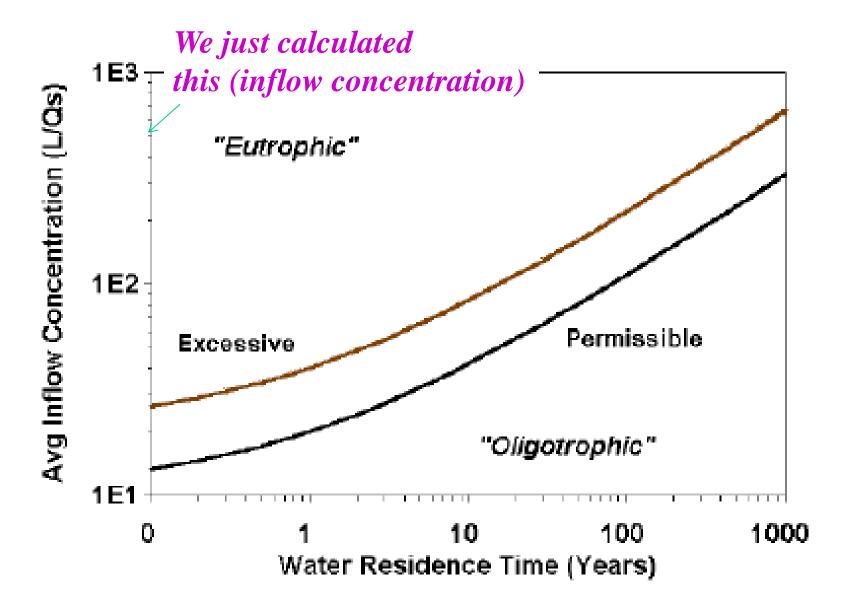

"Simple Model O"

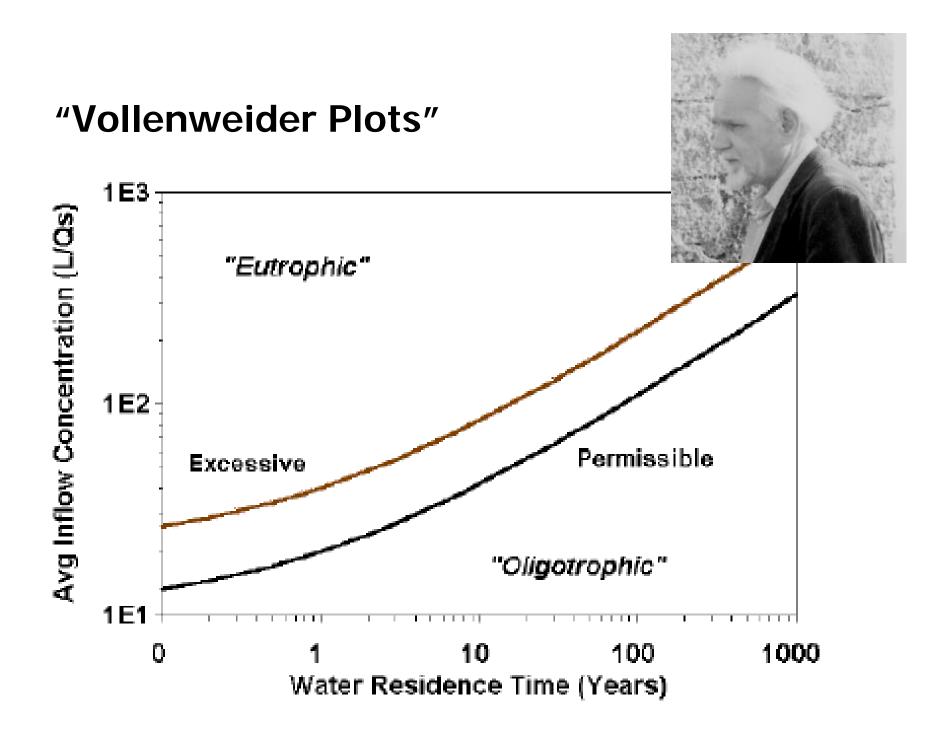
• C_P = Concentration of P

•
$$C_P = \frac{34,000 \, kg \, P/yr}{150,000,000 \, m3/yr}$$

• $C_P = 0.0002 \, \frac{kg}{m3} = 227 \, \frac{mg}{m3} = 227 \, \frac{ug}{liter}$

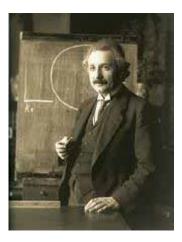
Not a very good model! Take a look at some data

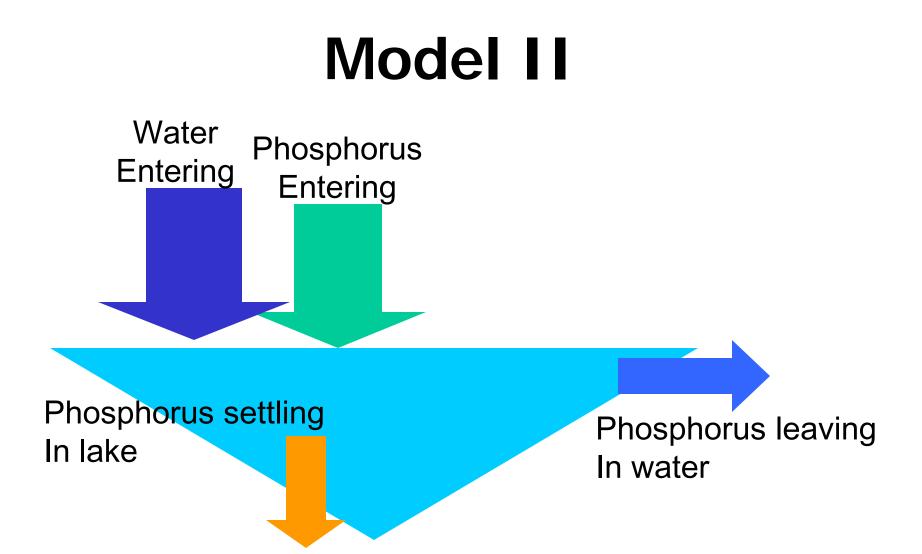



Lathrop and Panuska 1998

Revisit Assumptions

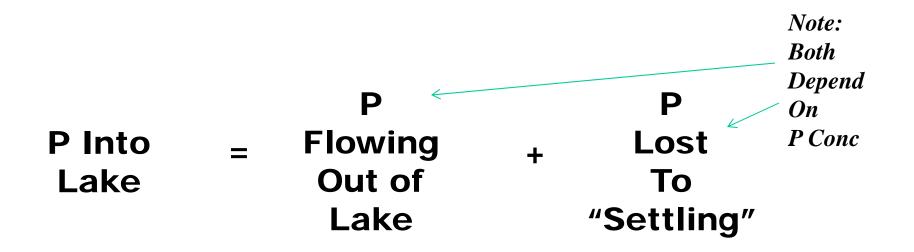
- Completely Mixed
- Steady Conditions
 - The P concentration doesn't change with time
 - The amount of P in the lake is constant
- P going into the lake is equal to what flows out


Historical Note– 1960s... higher "Inflow P Conc" OK if you have a longer residence time

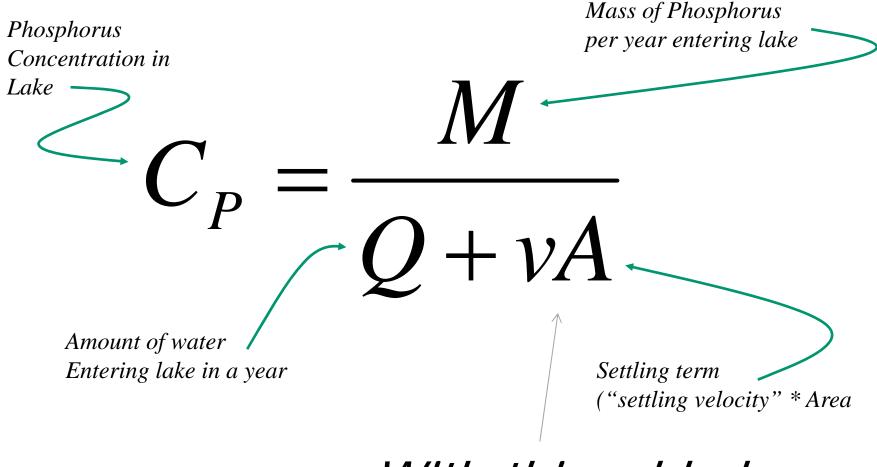


Not a very good model

- Why?
- What happens to P in a lake?
- Another observation on modeling
 - "Everything should be made as simple as possible, but no simpler" A. Einstein



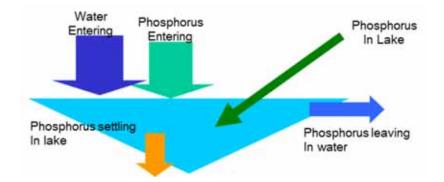
"mean total P concentration is amount of phosphorus divided by volume of water and diminished by retention term as P apparently lost to sediments" (Nurnberg, 1984)


– Now....What goes in must be equal to what goes out but "out" can be the outflow and loss to the sediment!

		Ρ		Р
P Into	=	Flowing Out of	+	Lost
Lake				То
		Lake		"Settling"

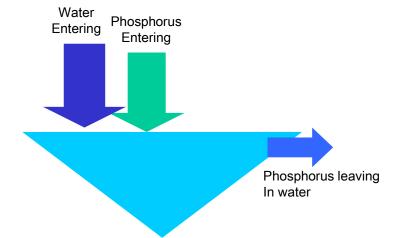
– Now....What goes in must be equal to what goes out but "out" can be the outflow and loss to the sediment!

This looks a lot like our simple model...

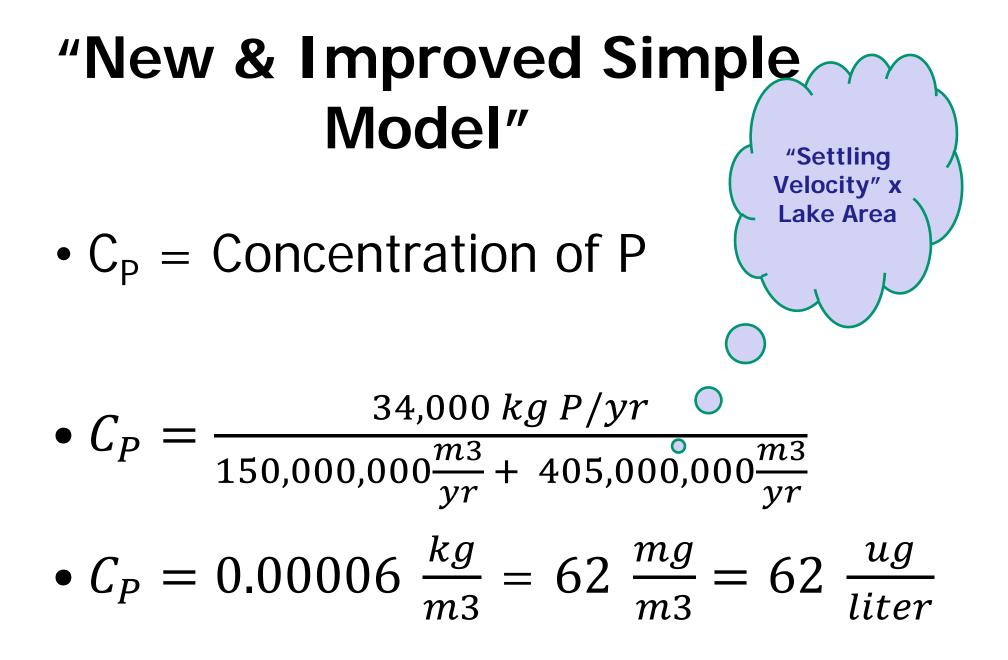

With this added

Model II Water Phosphorus Entering Entering Phosphorus leaving In water

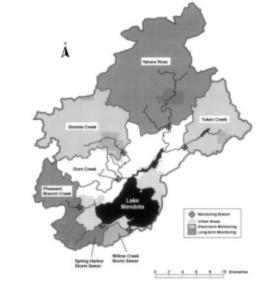
"mean total P concentration is amount of phosphorus divided by volume of water and diminished by retention term as P apparently lost to sediments" (Nurnberg, 1984)

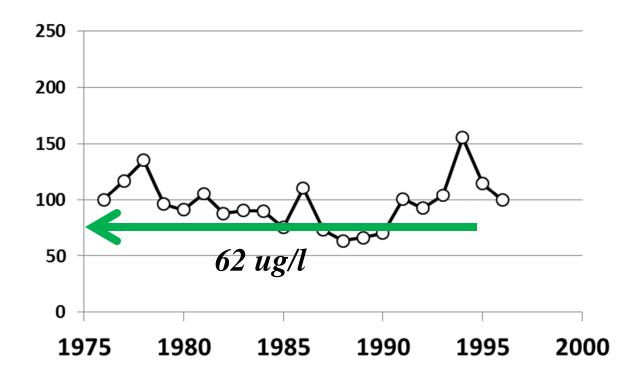

...just make a few assumptions

- Lake completely mixed
- Outflow conc. same as lake conc.
- Uniform conditions ("steady-state")
- Sedimentation proportional to lake conc.


Let's give this a try

- 10,000 acre lake
- 150,000 acre watershed




Assume

- 34,000 kg/year P
- 150,000,000 m3/year water
- 40,500,000 m2 lake surface
- 10 meter/year settling velocity

Better?

Lathrop and Panuska 1998

What does this have to do with WiLMS?

- WiLMS uses "empirical models"
- "Empirical Models" were developed by fitting a group of lakes with different equations
- Most started similar to the simple steadystate mass balance method... then fit with some adjustment factors

• For example, our second model is similar to:

$$C_P = \frac{L}{q_s + v_s}$$

Reckhow Natural Lake Model

$$C_P = \frac{L}{1.2q_s + 11.6}$$

Or Canfield Bachmann Model

This study with

$$TP = \frac{0.8L}{z(0.0942(L/z)^{0.422} + \rho)}$$
for natural lakes and

- L is P loading rate mg/m2-yr
- Z is mean depth
- Rho is water flushing rate

Prediction of Total Phosphorus Concentrations, Chlorophyll a, and Secchi Depths in Natural and Artificial Lakes¹

DANIEL E. CANFIELD JR.,² AND ROGER W. BACHMANN

Department of Animal Ecology, Iowa State University, Ames, IA 50011, USA

CANFIELD, D. E. JR., AND R. W. BACHMANN. 1981. Prediction of total phosphorus concentrations, chlorophyll a, and Secchi depths in natural and artificial lakes. Can. J. Fish. Aquat. Sci. 38: 414-423.

These are not perfect fits...

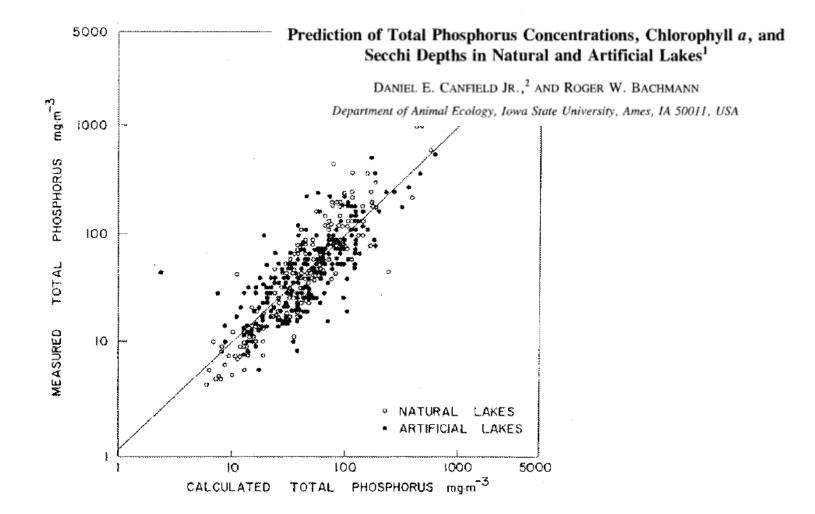


FIG. 2. Relationship between measured total phosphorus and total phosphorus calculated with equations 1, 5, and 6 of this study. The best-fit linear regression line is shown.

These are not perfect fits...

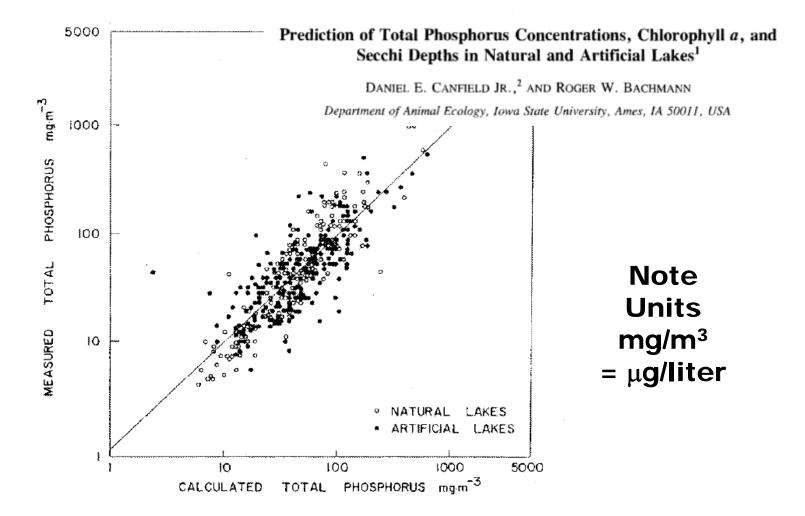


FIG. 2. Relationship between measured total phosphorus and total phosphorus calculated with equations 1, 5, and 6 of this study. The best-fit linear regression line is shown.

These are pretty simple models

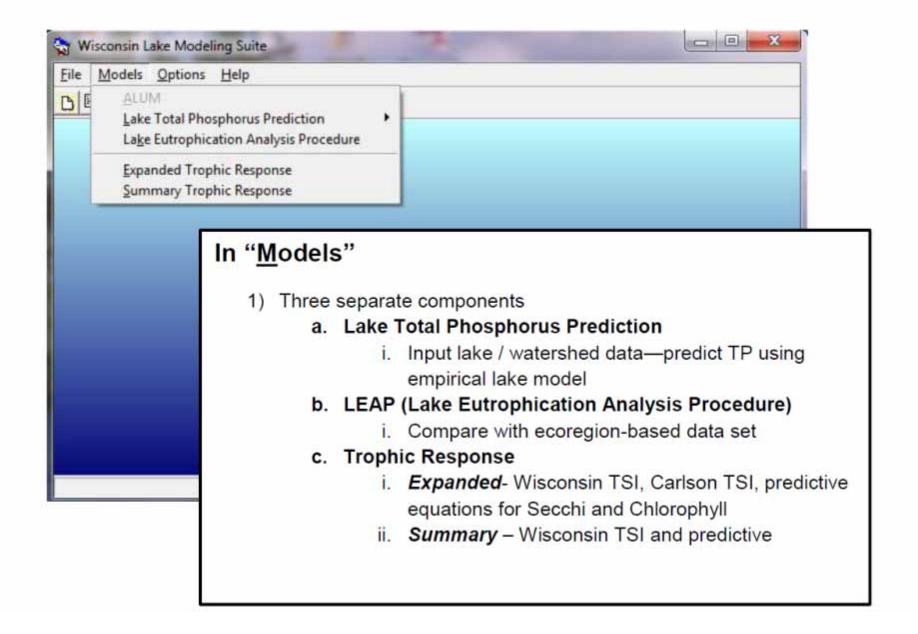
- Shortcomings
 - Scatter, prediction error
 - Heterogeneous databases of lakes
 - Little mechanistic insight

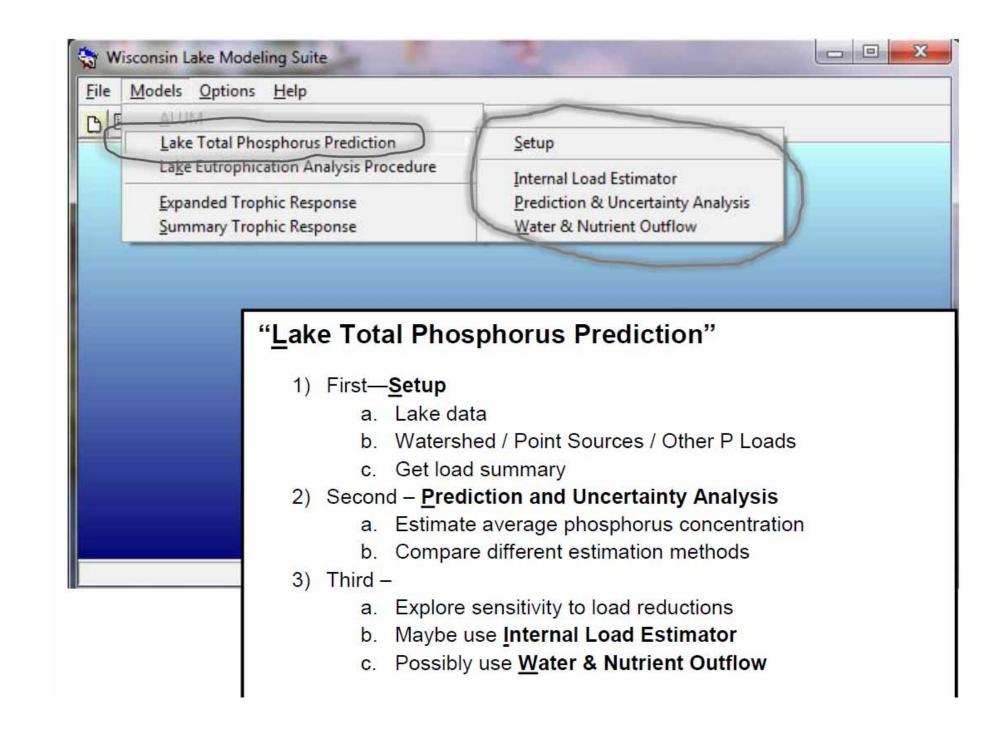
- "in spite of these shortcomings, empirically derived loading models often provide useful order-of-magnitude estimates. As such, they provide a quick way to "see the big picture."
- (Professor Steven Chapra in "Surface Water Quality Modeling")

Two Pieces to Eutrophication Modeling in WiLMS

- Combine watershed export model & lake response tool
- Estimate lake P concentration with knowledge of lake and P loading (external loads)
- Annual time-step

WiLMS

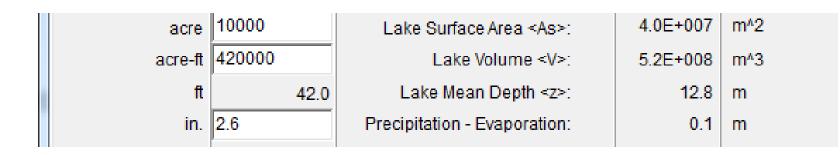

Microsoft System Center 2012


Q

NoteTab Light Python 2.7 OuickTime

- 1. Download from WDNR <u>http://dnr.wi.gov/lakes/model/</u>
- 2. Installed usually in
 - a. "All Programs"
 - i. "Wisconsin DNR"
 - 1. WiLMS

S Wisconsin Lake Modeling Suite	📕 SharePoint
Ele Models Options Help	 SigmaPlot Startup UWSP Application Center Wisconsin DNR WiLMS WiLMS Help WiLMS WiLMS
	4 Back
	Search programs and files



WiLMS now w/ Model II

Setup / General & Hydrologic/Morphometric Module

- Dane Co
- SPO: 75 mg/m3; GSM: 90 mg/m3
- 10,000 acre lake
- 420,000 acre feet lake volume
 - Check mean depth ~42 feet?

Model II Phosphorus Module (NPS)

- Row Crop 90,000 acres
- Pasture Grass 30,000 acres
- MD Urban 30,000 acres
- Note that lake surface is already entered
- Note loading in kg/ha-year "export rates"

General Hydrologic & Morphometric Module Phosphorus Module (NPS) Phosphorus Module (PS) Total Loading									
Reset Defaults 150000.0 Total Drainage Area Assigned A Land Cover									
		Loa ding (kg/ha-year) Loa			Loa	a ding (kg-yea r)			
Land Use	Area (acre)	Low	Most Likely	High	Loading %	Low	Most Likely	High	
Row Crop AG	90000	0.50	1.00	3.00	76.9	18212	36423	109269	
Mixed AG	0.0	0.30	0.80	1.40	0.0	0	0	0	
Pasture/Grass	30000	0.10	0.30	0.50	7.7	1214	3642	6071	
HD Urban (1/8 Ac)	0.0	1.00	1.50	2.00	0.0	0	0	0	
MD Urban (1/4 Ac)	30000	0.30	0.50	0.80	12.8	3642	6071	9713	
Rural Res (>1 Ac)	0.0	0.05	0.10	0.25	0.0	0	0	0	
Wetlands	0.0	0.10	0.10	0.10	0.0	0	0	0	
Forest	0.0	0.05	0.09	0.18	0.0	0	0	0	
User Defined 1	0.0	0.00	0.00	0.00	0.0	0	0	0	
User Defined 2	0.0	0.00	0.00	0.00	0.0	0	0	0	
User Defined 3	0.0	0.00	0.00	0.00	0.0	0	0	0	
User Defined 4	0.0	0.00	0.00	0.00	0.0	0	0	0	
User Defined 5	0.0	0.00	0.00	0.00	0.0	0	0	0	
User Defined 6	0.0	0.00	0.00	0.00	0.0	0	0	0	
Laka Surfana	10000.0	0.10	0.20	1 00	2.6	/05	101/	/0/7	
% NPS Change:	0% ' ' -100 -s	, , , , , 10 -80 -70	-60 -50 -40	-30 -20 -10	0 0 10 20	30 40	50 60 70	80 90 100	

WiLMS now w/ Model II

Setup / General & Hydrologic/Morphometric Module

- Dane Co
- SPO: 75 mg/m3; GSM: 90 mg/m3
- 10,000 acre lake
- 420,000 acre feet lake volume
 - Check mean depth ~42 feet?
 - Check q_s ... about 10 ft/year? (what's that?)
 - What is water residence time? (what's that?)
 - What is the lake flushing rate? (what's that?)

Example 1 Phosphorus Module (PS)

Don't enter anything here
 Point sources and septic tank stuff

Example 1 (Total Loading)

- Nothing to enter here...
 - Review
 - Total loading in lbs.... Around 100,000?
 - Should be all NPS... right?

– Leave – save as something ("Dane1"?)

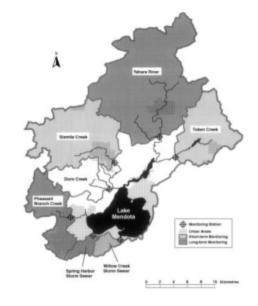
😽 Phospho	rus Loading Data Setup					
General	Hydrologic & Morphometric Module	Phosphorus M	odule (NPS)	Phosphore	us Module (PS) Total Loading
		1			I	
	Description	Low	Most Likely	High	Loading %	
Tota	I Loading (Ib)	51747.7	104387.6	284612.3	100.0	
Tota	I Loading (kg)	23472.6	47349.9	129099.3	100.0	
Area	al Loading (Ib/ac-year)	5.17	10.44	28.46		
Area	al Loading (mg/m^2-year)	580.02	1170.04	3190.11		
Tota	I PS Loading (Ib)	0.0	0.0	0.0	0.0	
Tota	I PS Loading (kg)	0.0	0.0	0.0	0.0	

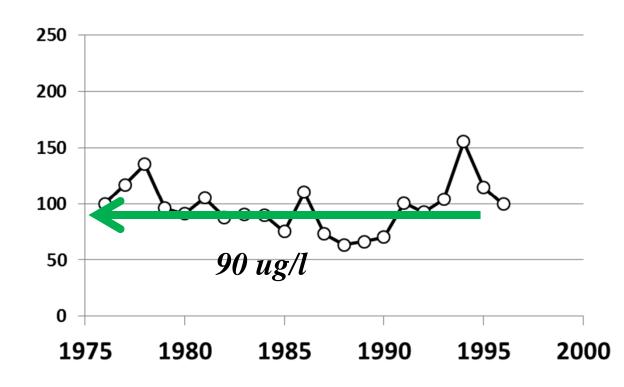
	Hydrologic & Morphometric Module	e Phosphorus M	orus Module (NPS) Phosphorus Module (PS			Total Loading
	Description	Low	Most Likely	High	Loading %	
Tota	al Loading (Ib)	51747.7	104387.6	284612.3	100.0	
	al Loading (kg)	23472.6	47349.9	129099.3	100.0	
Area	al Loading (Ib/ac-year)	5.17	10.44	28.46		
Area	al Loading (mg/m^2-year)	580.02	1170.04	3190.11		
Tota	al PS Loading (Ib)	0.0	0.0	0.0	0.0	
Tota	al PS Loading (kg)	0.0	0.0	0.0	0.0	
Tota	al NPS Loading (Ib)	50855.5	101711.0	275690.3	100.0	
Total NPS Loading (kg)		23067.9	46135.8	125052.3	100.0	
	100 00 00 70	-60 -50 -40 -30	-20 -10 0	10 20		
% P Cha	ngo.					

Model II – P Results

(Models – Lake Total Phosphorus Prediction – Prediction & Uncertainty Analysis)

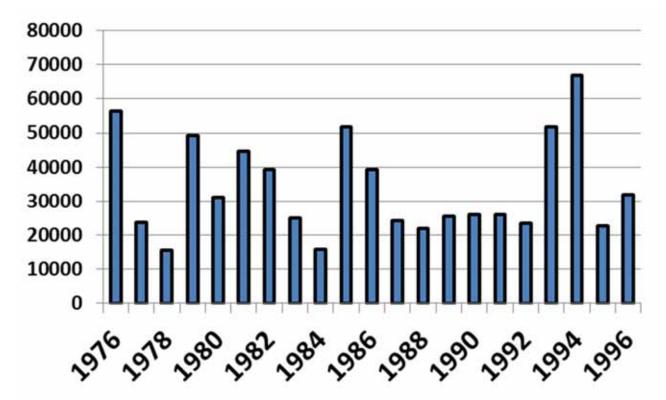
Phosphorus Predictions & Uncertainty Analysis										
Observed spring overturn total phosphorus (SPO): 75.0 mg/m^3 Numberg Model Input - Est. Gross Int. Loading: Observed growing season mean phosphorus (GSM): 90.0 mg/m^3 0 kg Back calculation for SPO total phosphorus: 0.0 mg/m^3 % Confidence Range: 70										
Lake Phosphorus Model	Low Total P (mg/m^3)	Most Likely Total P (mg/m^3)	High Total P (mg/m^3)	Predicted -Observed (mg/m^3)	% Dif.	Confidence Lower Bound	Confidence Upper Bound	Parameter Fit?	Back Calculation (kg/year)	Model Type
Walker, 1987 Reservoir	25	50	135	-40	-44	29	105	Tw	0	GSM
Canfield-Bachmann, 1981 Natural Lake	39	60	110	-30	-33	19	173	FIT	1	GSM
Canfield-Bachmann, 1981 Artificial Lake	34	49	78	-41	-46	15	141	FIT	1	GSM
Rechow, 1979 General	38	76	208	-14	-16	43	162	FIT	0	GSM
Rechow, 1977 Anoxic	102	205	560	115	128	123	432	FIT	0	GSM
Rechow, 1977 water load<50m/year	43	87	236	-3	-3	50	184	P Pin	0	GSM
Rechow, 1977 water load>50m/year	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Walker, 1977 General	73	146	399	71	95	73	322	FIT	0	SPO
Vollenweider, 1982 Combined OECD	45	81	184	-2	-2	40	164	FIT	0	ANN
Dillon-Rigler-Kirchner	50	100	273	25	33	59	211	P	0	SPO
Vollenweider, 1982 Shallow Lake/Res.	38	71	172	-12	-15	35	148	FIT	0	ANN
Larsen-Mercier, 1976	62	124	338	49	65	76	259	P Pin	0	SPO
Nurnberg, 1984 Oxic	54	109	297	19	21	57	237	P	0	ANN


🗸 Finished


- 13 empirical equations
- TP Predictions
- Difference from observed– that was input in the "Setup" screen (note that if both GSM and SPO– the average will be used for ANN)
- Uncertainty bounds set confidence range
- Parameter fit?- checks to see if the input fits within the model data set if not it indicates where it differs (N/A means it didn't calculate) ... (more in WiLMS Manual)

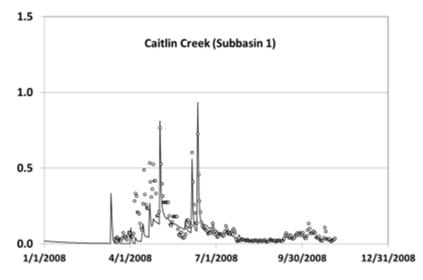
Observed spring overturn total phosphorus Observed growing season mean phosphorus Back calculation for SPO total phos Back calculation GSM phos	(GSM): phorus: 0.0		3 Est. 3	nberg Model Inp Gross Int. Load 0 kg Confidence Ran	ling:					
Lake Phosphorus Model	Low Total P (mg/m^3)	Most Likely Total P (mg/m^3)	High Total P (mg/m^3)	Predicted -Observed (mg/m^3)	% Dif.	Confidence Lower Bound	Confidence Upper Bound	Parameter Fit?	Back Calculation (kg/year)	Model Type
Walker, 1987 Reservoir	25	50	135	-40	-44	29	105	Tw	0	GSM
Canfield-Bachmann, 1981 Natural Lake	39	60	110	-30	-33	19	173	FIT	1	GSM
Canfield-Bachmann, 1981 Artificial Lake	34	49	78	-41	-46	15	141	FIT	1	GSM
Rechow, 1979 General	38	76	208	-14	-16	43	162	FIT	0	GSM
Rechow, 1977 Anoxic	102	205	560	115	128	123	432	FIT	0	GSM
Rechow, 1977 water load<50m/year	43	87	236	-3	-3	50	184	P Pin	0	GSM
Rechow, 1977 water load>50m/year	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Walker, 1977 General	73	146	399	71	95	73	322	FIT	0	SPC
Vollenweider, 1982 Combined OECD	45	81	184	-2	-2	40	164	FIT	0	ANN
Dillon-Rigler-Kirchner	50	100	273	25	33	59	211	P	0	SPC
Vollenweider, 1982 Shallow Lake/Res.	38	71	172	-12	-15	35	148	FIT	0	ANN
Larsen-Mercier, 1976	62	124	338	49	65	76	259	P Pin	0	SPC
Nurnberg, 1984 Oxic	54	109	297	19	21	57	237	P	0	ANN

V Finished


Discuss

Lathrop and Panuska 1998

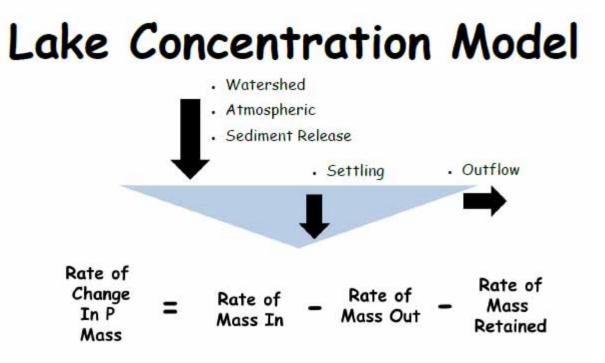
Challenges: Annual Variations in Phosphorus Load... (how does the model handle this?)

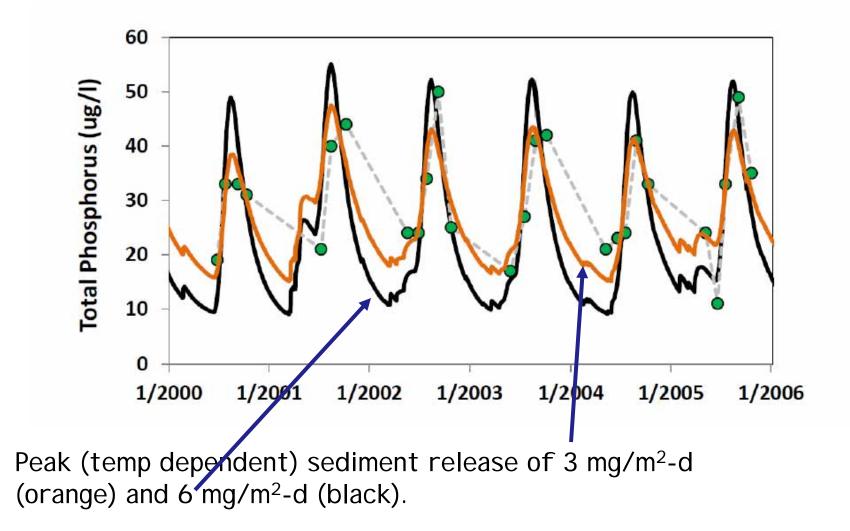


• P Load (kg) to Lake (Lathrop and Panuska)

What if you wanted to model concentration variation over

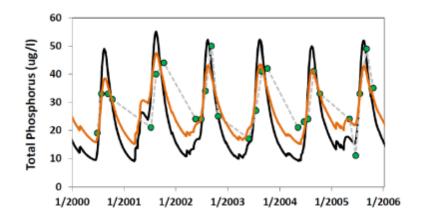
time?


- Year to Year?
- Within Year?

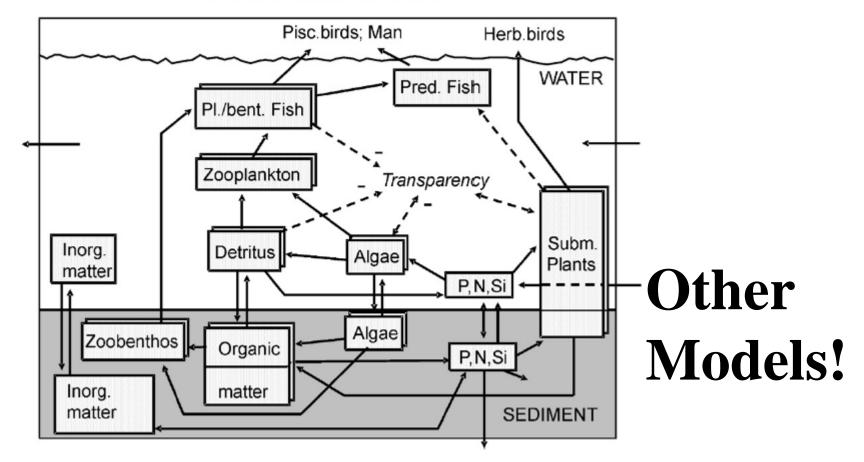


Measured (symbols) and SWAT simulated (line) flow over time at one of the sub-watersheds draining to the lake.

One approach... similar method but daily time step



Corresponding settling rates are 11 m/year and 18 m/year.

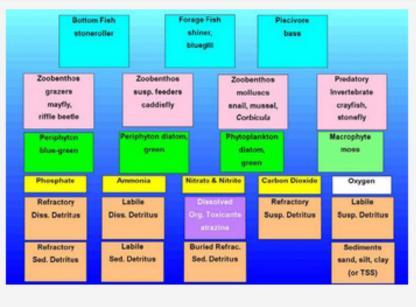

Upper St. Croix Lake Example

- The Upper St. Croix Lake model accounts for inflow, sediment release, "settling" and outflow
- These models could be quite a bit more complicated...

PCLake Model Structure

Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PCLake

Jan H. Janse^a, Lisette N. De Senerpont Domis^b, Marten Scheffer^c, Lambertus Lijklema^c, Lowie Van Liere^a, Marcel Klinge^d, Wolf M. Mooij^{b,*}


AQUATOX (USEPA)

Ecological components simulated by AQUATOX

AQUATOX can model numerous inter-related components in aquatic ecosystems, known as the **state variables**.

- Phytoplankton (multiple species)
- Periphyton and submerged aquatic vegetation (multiple species)
- Planktonic and benthic invertebrates (multiple species)
- Forage, game, and bottom fish (multiple species)
- Nutrients and dissolved oxygen
- Organic and inorganic sediments
- Toxic organic chemicals (up to 20 different chemicals simultaneously)
- Perfloroalkylated Surfactants (bioaccumulation only)

AQUATOX is not intended to include every species of plant or animal that can exist in an aquatic habitat or every ecological process, but attempts to characterize the significant factors that determine the functioning of the ecosystem.

An Example of AQUATOX State Variables for a Stream

Ken Reckhow's Water Quality Wire

Some thoughts and observations on the science, engineering, and policy analysis of water quality assessment and management.

Tradeoffs

Friday, August 8, 2014

Is There A Disconnect Between Mechanistic and Statistical Water Quality Modelers?

In overly simple terms, the surface water quality modeling community can be divided into two camps – mechanistic and statistical. In much of my recent work, I have sought a middle ground that is loyal to process understanding yet yields a measure of uncertainty in predictions. I have argued for years that we should not provide decision makers with predictions of the impact of management actions without an estimate of the confidence we have in those predictions. To me, this point is irrefutable, and it continues to dismay me that EPA and other agencies largely ignore this point in the water quality models they support.

My mechanistic modeling colleagues have tended to stress large elaborate models that are generally motivated by the assumption that models must be sufficiently detailed so the modelers can "get the processes right." This is a goal that likely will never be achieved. The result is that these elaborate models are overparameterized; this condition, called "equifinality," is well-documented in the hydrologic sciences, but the concept rarely has been discussed in the water quality modeling literature. Among experienced hydrologic modelers, it is well-recognized that many "sets" of parameter values will fit large simulation models about equally well; unfortunately, this can create problems with the interpretation of sensitivity analyses, since different (equally well-fitting) parameter sets can lead to quite different causal conclusions about the effect of management actions. There is a lot of terminology related to the P "settling"...

 Retention = fraction of the incoming P that is retained

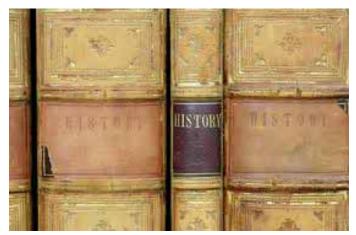
 $R = 1- (C_{out}/C_{in})$

- » See page 58, 68, 100 of notes
- » Therefore
- » Can show that $R=v_s/(v_s+q_s)$ and...

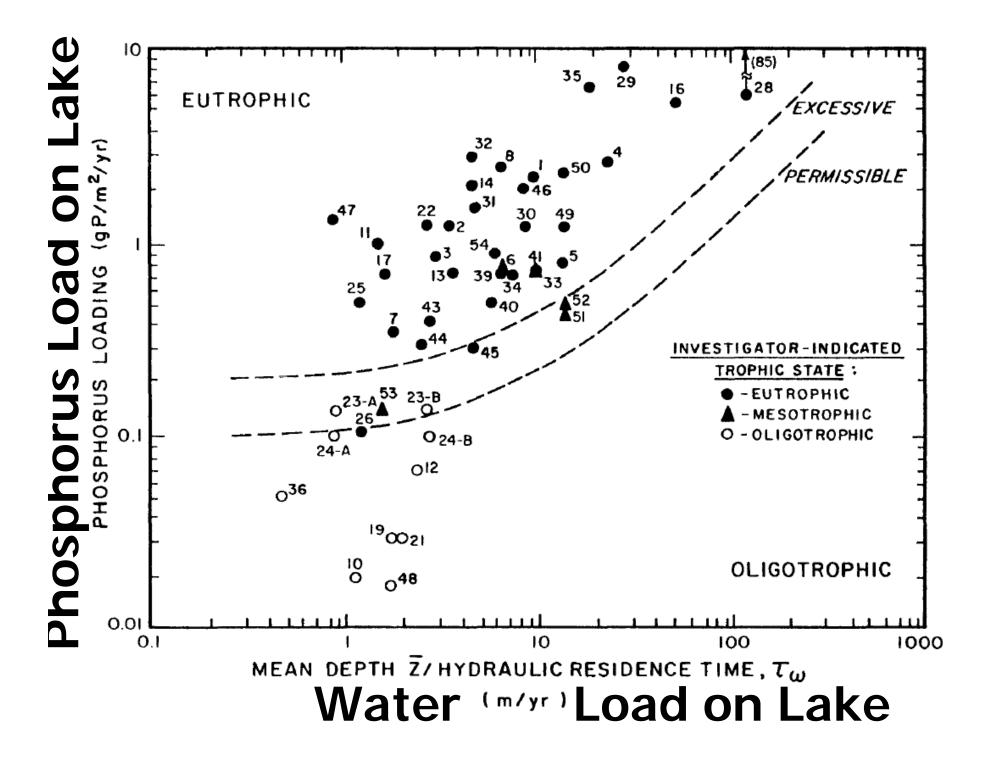
» $C_{P} = (L/q_{s})(1-R)$

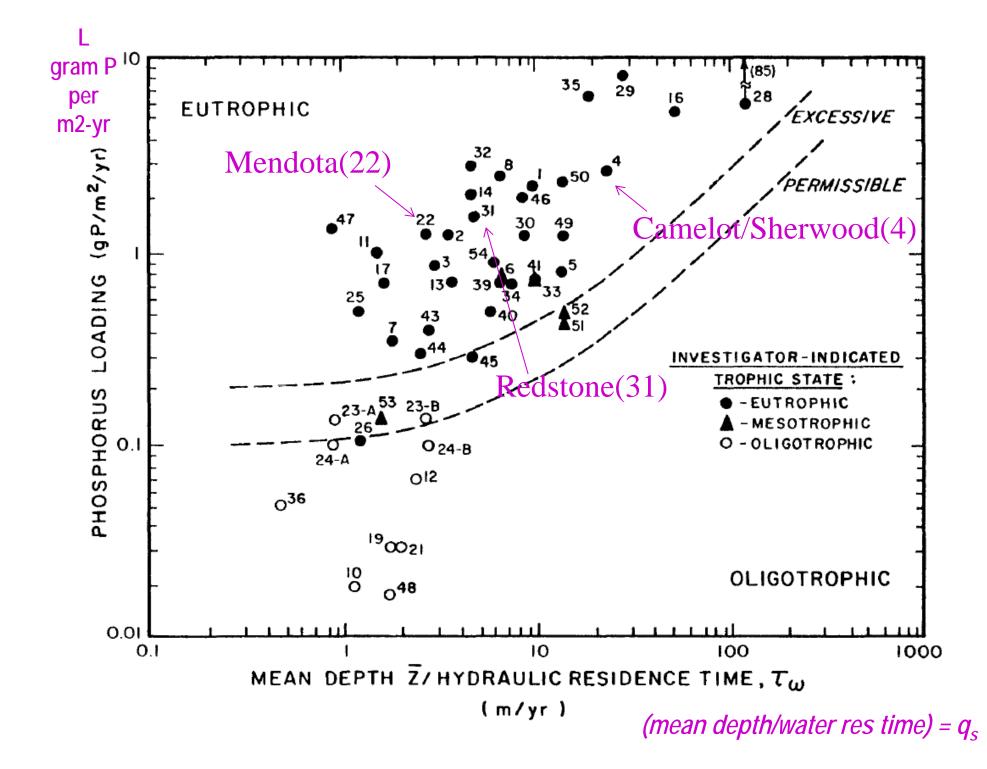
• Volumetric Removal...

Or
$$kV_L = vA_s$$



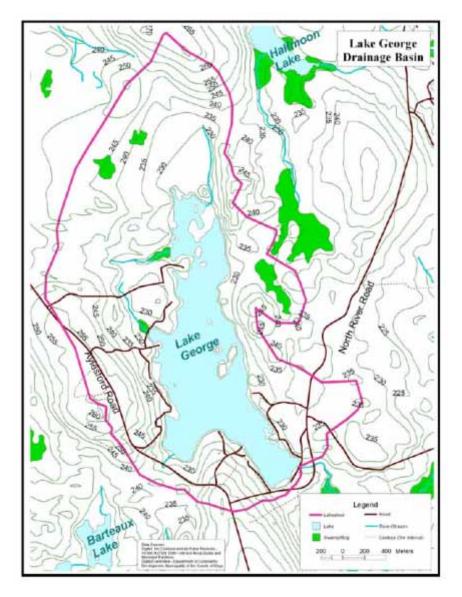
These are equivalent...


- For example... retention
 - Our example, 78% of the annual P is retained (is "stored")
 - Our hydraulic loading is
 - 10 ft/year (that's q_s)
 - Our P load could be expressed as
 - 1.12 g/(m² of lake surface year) (that's L)
 - Then could use $Cp = (L/q_s)(1-R) = 82 \text{ ug/l}$


You want more of this... check out Reckhow and Chapra Book pages

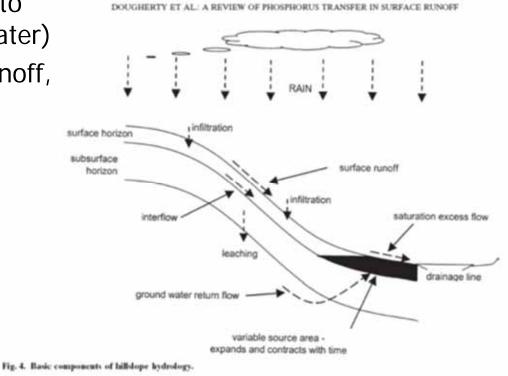
Historical Note

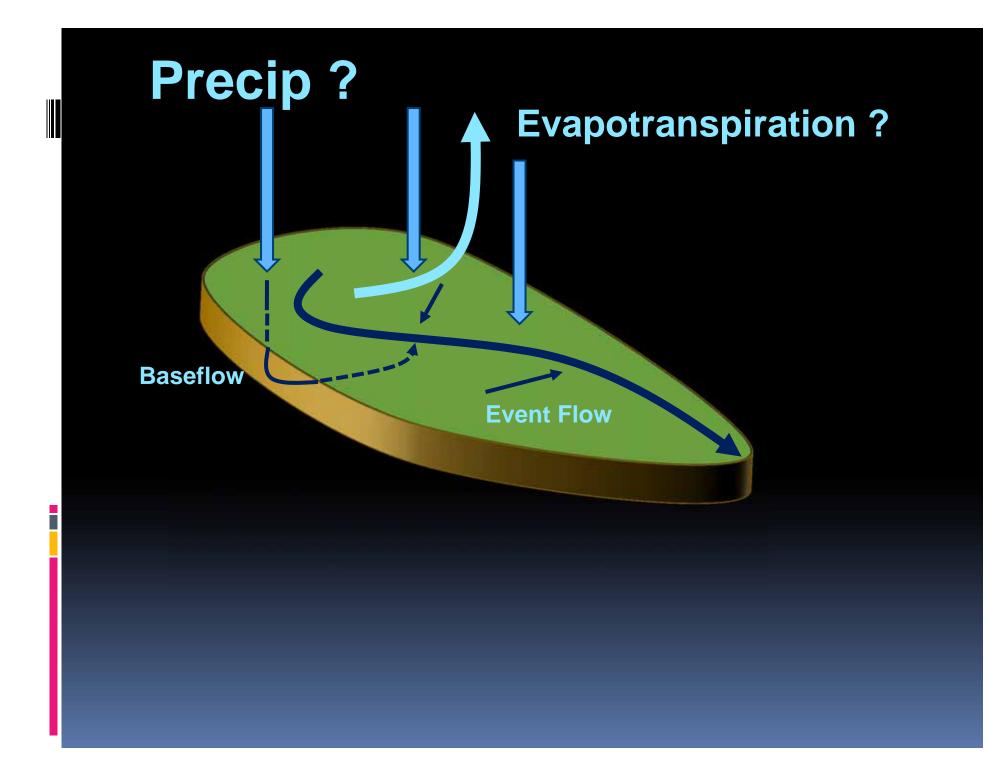
- 1960s/70s eutrophication / phosphorus
- OECD (Organization for Economic Cooperation and Development) Eutrophication Study (1970s)
 - 18 countries involved, in some, field studies were initiated
 - US used small grants to encourage reports on existing studies
 - Summarized in 1978 Report (Rast and Lee)

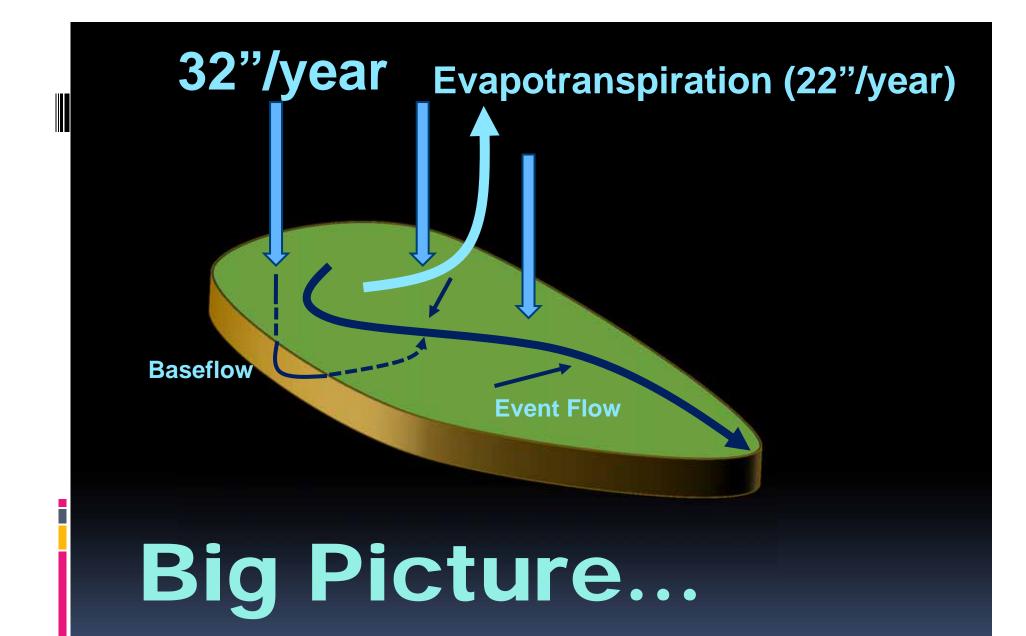


Now Let's Talk about Those Inputs

- Water Budget
 - Annual estimate for WiLMS
 - Need the total quantity of water entering the lake
 - What happens to precip on land & water?
- Phosphorus Loading


Watershed - Water Budget




Watershed - Water Budget


Hydrology...lots of pathways to the lake

- Precipitation = ET + "Runoff"
- "Runoff" = baseflow + event flow
- "Baseflow" = percolation to saturated zone (groundwater)
- "Event flow" = surface runoff, saturation excess flow

10 inches /year on 1 square mile... = 23,000,000 cubic feet /year = 0.7 cubic foot every second

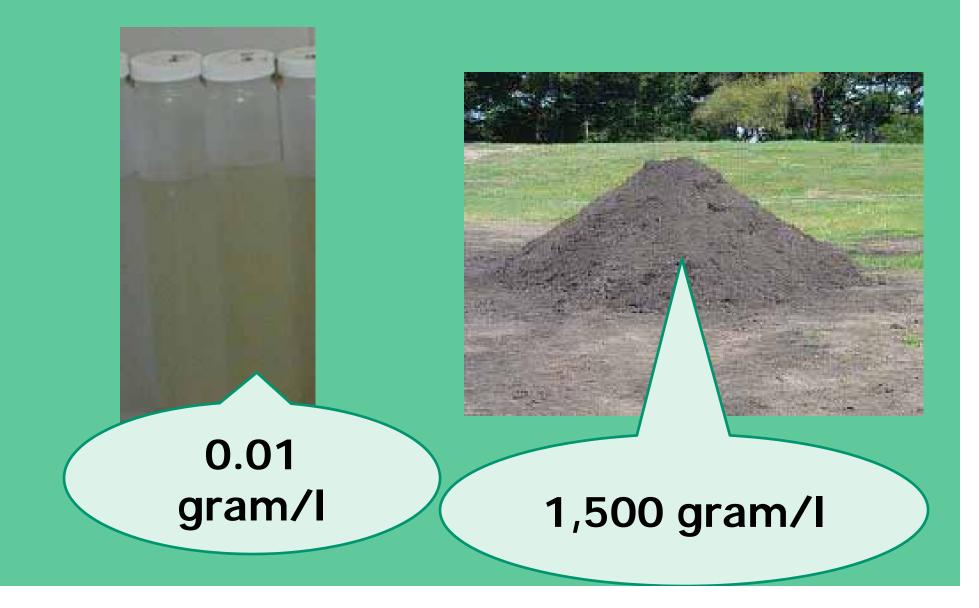
		Precip/ 🔺	
Location	Runoff	Evap	Ad 📬
Adams	9.4	2.6	
Ashland	14.0	7.3	🗸 ОК
Barron	9.7	4.5 ≣	
Bayfield	14.0	6.4	🗙 Cano
Brown	8.5	3.4	? <u>H</u> el
Buffalo	6.0	2.3	<u><u><u> </u></u></u>
Burnett	10.8	4.1	
Calumet	7.9	3.5	
Chippewa	9.3	3.4	
Clark	9.6	4.1	
Columbia	8.0	2.4	
Crawford	8.0	3.	
Dane	8.0	2.6	
Dodge	7.5	2.4	
Door	9.0	3.9	
Douglas	13.6	5.2	
Dunn	7.3	2.5	
Eau Claire	8.5	2.5	
Florence	13.7	5.6	
Fond du Lac	7.9	3.1	
Forest	13.1	5.3	
Grant	8.0	.4	
Green	8.0	3.1	
Green Lake	9.3	3.1	
Iowa	8.0	2.0	
Iron	14.0	7.0	
Jackson	8.8	2.9	
Jefferson	7.2	2.8	
Juneau	8.5	2.0	
Kenosha	8.0	4.5	
Kewaukee	8.0	3.4	
La Crosse	8.0	1.4	
Lafayette	8.0	2.4	
Langlade	12.0	5.3	

,	Wil	_MS —		7			
💱 Phosphorus Load	Y Phosphorus Loading Data Setup						
General Hydrolog	ic & Morphometri	ic Module Phosphorus Meadle (N	IPS) Phospho	rus Module (PS)			
	English		Metric				
acre	150000.0	Tributary Drainage Area:	6.1E+008	m^2			
in.	8	Total Unit Runoff:	0.20	m			
acre-ft	100000.0	Annual Runoff Volume:	1.2E+008	m^3			
acre	10000.0	Lake Surface Area <as>:</as>	4.0E+007	m^2			
acre-ft	420000.0	Lake Volume <v>:</v>	5.2E+008	m^3			
ft	42.0	Lake Mean Depth <z>:</z>	12.8	m			
in.	2.6	Precipitation - Evaporation:	0.1	m			
acre-ft/year	102166.7	Hydraulic Loading:	1.3E+008	m^3/year			
ft/year	10.2 Areal Water Load <qs>:</qs>		3.1	m/year			
Lake Flushing Rate : 0.24 1/year Water Residence Time: 4.11 year							
	√ Le	ave 🛛 🆓 Write Results 🛛 📍	Help Help S	Select A Graph			

Phosphorus Inputs

- Water Budget
- Phosphorus Loading
 - Sources include
 - Event flow
 - Baseflow
 - Atmospheric Deposition
 - Internal (eg sediments)
- Land is a concentrated sediment & nutrient source

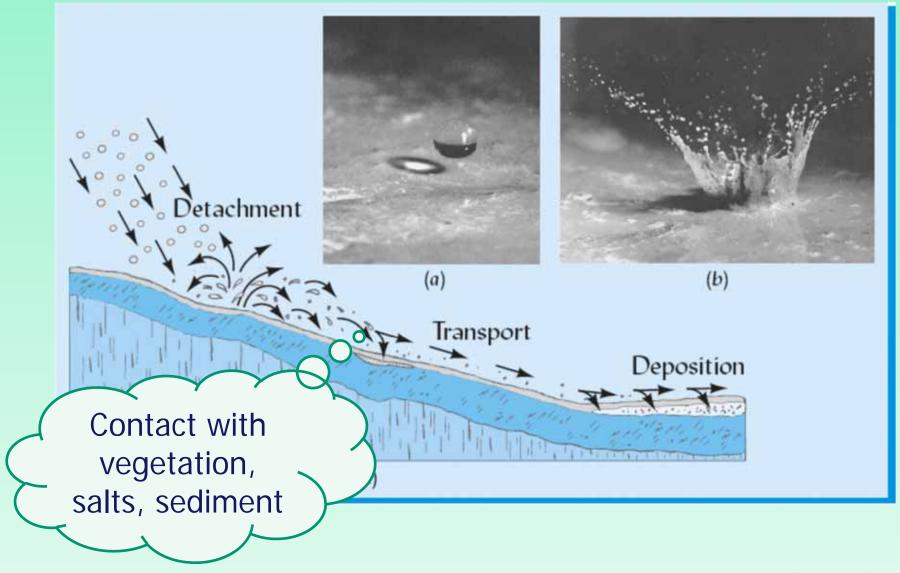
WiLMS Watershed Inputs


- "Export"
 - Pounds/acre-yr
 - Kg/hectare-yr
 - Pounds/square mile-yr
- Comment on unit conversions
 - pound/acre-yr is about the same as kilogram/ha-yr
- Watershed loading combines sources and transport
 - Quantity, availability
 - Interaction with water & transport

Phosphorus Export Coefficients

- Panuska and Lillie (p 29)
- Corsi et al. (p 37)
- Summary from PRESTO (p 41)
- Sparrow
- Hubbard Brook (p 52)
- Ontario LCM (p 119)

Total Suspended Solids...



Phosphorus

300,000 microgram P /liter

40 microgram P /liter

Add Energy & Opportunity

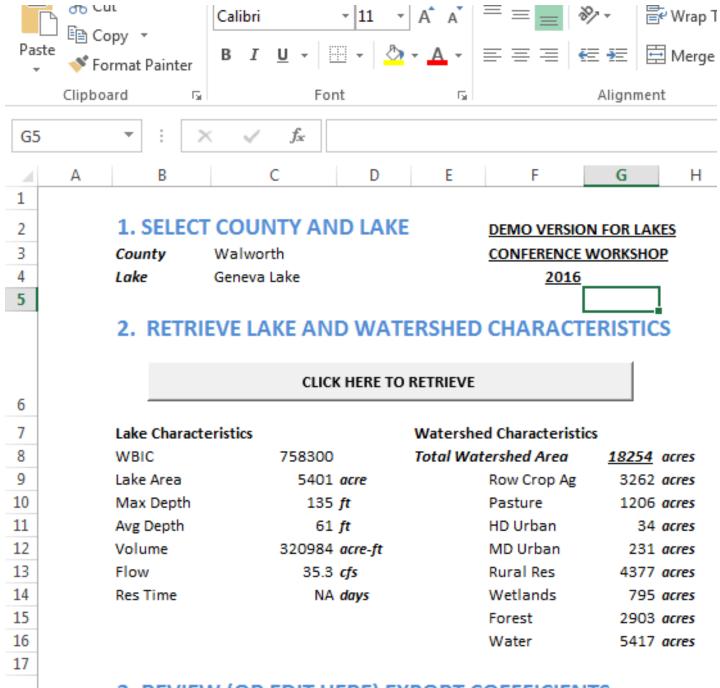
Nyle Brady and Raymond Weil 3/e

Surface Water Data Viewer			V.	Court		
	Reach ID 600091109 Zoom to Feature Pan to Feature Add to Selected Details		▲ Trian	Quick Comment abou		
Show Show Pan Zoom In Layers Legend Map Leyers Navigation	Field Name Annual precip., upstream watershed avg (mm, 1961-2000) Annual air temp., upstream watershed avg (C, 1961-2000)	Field Value 844 7.8	rt> Arrov	Wisconsin DNR Surface Water Viewe		
IL Results (3) C View History lefine Results Table View Chanting Vielect All Select None	Apr-Oct air temp, upstream watershed avg (C, 1961-2000) July air temp, upstream watershed avg (C, 1961-2000) Runoff curve number, upstream watershed avg Open Water (% of upstream watershed)	15.7 21.8 78 7.3				
Dane County Lake Mendota, (WBIC 805400) Open Water Metadata Lake Page About the Water	Developed, Open Space (% of upstream watershed) Developed, Low Intensity (% of upstream watershed) Developed, Medium Intensity (% of upstream watershed) Developed, High Intensity (% of upstream watershed) Barren Land (% of upstream watershed)	6.5 9.4 3.2 0.8 0.1	12 A			
Reach ID 600091109 WI Hydro Data-Plus Catchments	Deciduous Forest (% of upstream watershed) Evergreen Forest (% of upstream watershed) Mixed Forest (% of upstream watershed) Shrub/Scrub (% of upstream watershed)	4.4 0.1 0.0 0.6 0.4	R			
	Grassland/Herbaceous (% of upstream watershed) Pasture/Hay (% of upstream watershed) Cultivated Crops (% of upstream watershed) Woody Wetlands (% of upstream watershed) Emergent Herbaceous Wetlands (% of upstream watershed)	18.2 45.7 0.7				
	2mi 2.5km	Lat: ,	1	O mark		

Favorites Tools Help

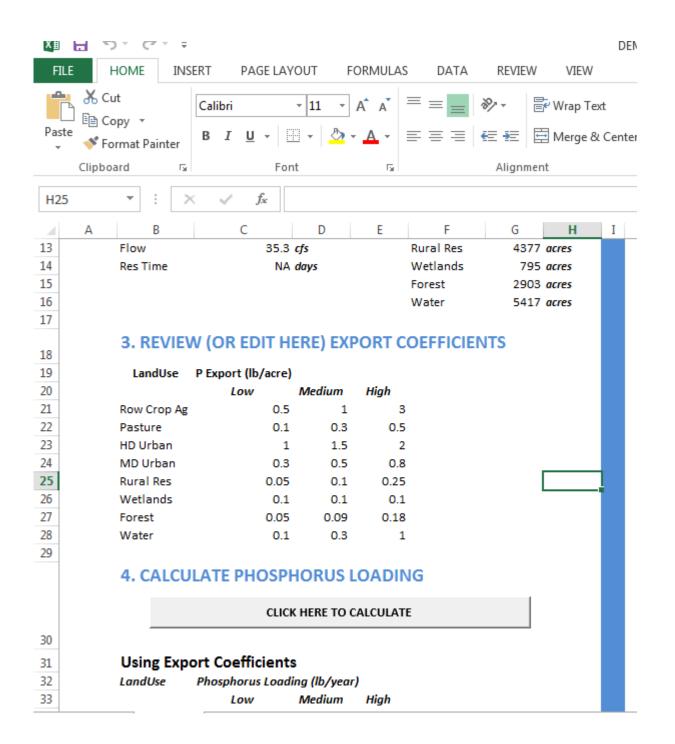
🖶 • 🗗 • 🖉 • 🔅 • 🔞 • 🔊

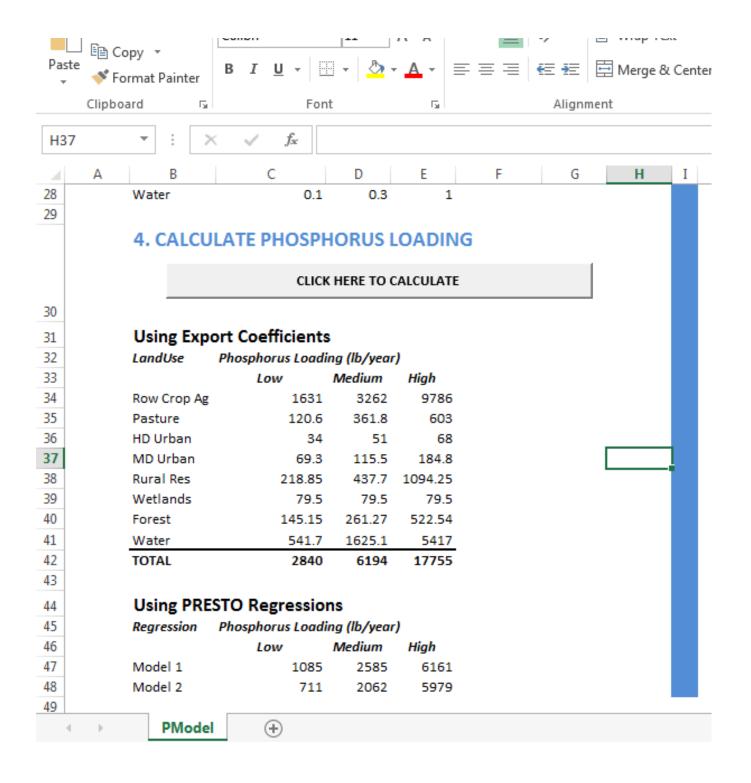
Viewer	Reach ID 600080487	□ ×	
Identify Tools D	Zoom to Feature Pan to Feature Add to Selected		
M +	Details Attributes		🛆 Triangle 🖌 Undo 🗙 Clear All 🔡 Edit
Pan Zoom In 2	Field Name	Field Value	Arrow A Redo
	Annual precip., upstream watershed avg (mm, 1961-2000)	900	as Snapeme
Navigation	Annual air temp., upstream watershed avg (C, 1961-2000)	8.8	Edit Download Drawin
	Apr-Oct air temp, upstream watershed avg (C, 1961-2000)	16.5	A the the second
	July air temp, upstream watershed avg (C, 1961-2000)	22.5	FILL AND
View Charting Vie	Runoff curve number, upstream watershed avg	78	
ne	Open Water (% of upstream watershed)	29.7	
	Developed, Open Space (% of upstream watershed)	16.3	-J
	Developed, Low Intensity (% of upstream watershed)	7.7	
	Developed, Medium Intensity (% of upstream watershed)	1.3	
WBIC 758300)	Developed, High Intensity (% of upstream watershed)	0.2	
data ut the Water	Barren Land (% of upstream watershed)	0.2	
	Deciduous Forest (% of upstream watershed)	15.9	
30487	Evergreen Forest (% of upstream watershed)	0.0	
us Catchments	Mixed Forest (% of upstream watershed)	0.0	
	Shrub/Scrub (% of upstream watershed)	0.1	
	Grassland/Herbaceous (% of upstream watershed)	0.2	
	Pasture/Hay (% of upstream watershed)	6.3	
	Cultivated Crops (% of upstream watershed)	17.9	1 States of the states of the
	Woody Wetlands (% of upstream watershed)	4.4	
	Emergent Herbaceous Wetlands (% of upstream watershed)	0.0	MARINA 12
	•	•	PT VAT ALL


Spreadsheet Tool for Watershed Information

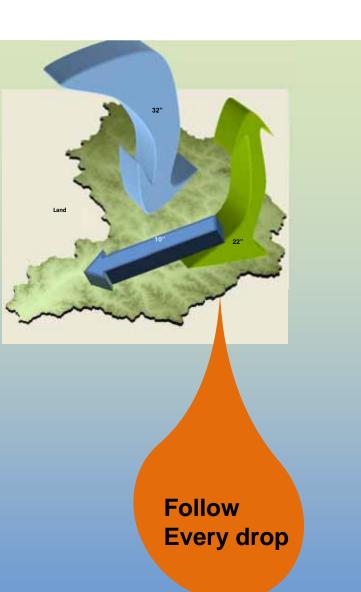
- Adapted from the Surface Water Data Viewer
- In your Precon folder as "DEMOVersion"
- An Excel Spreadsheet
- Let's try it

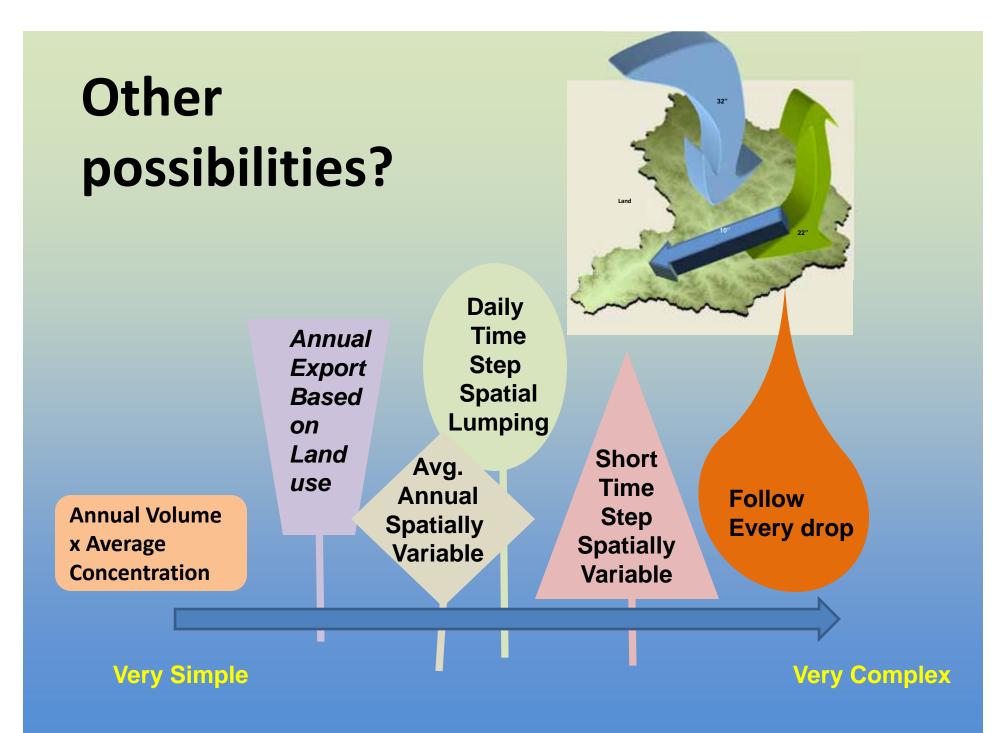
Favorites Tools Help


🖶 • 🗗 • 🖉 • 🔅 • 🔞 • 🔊

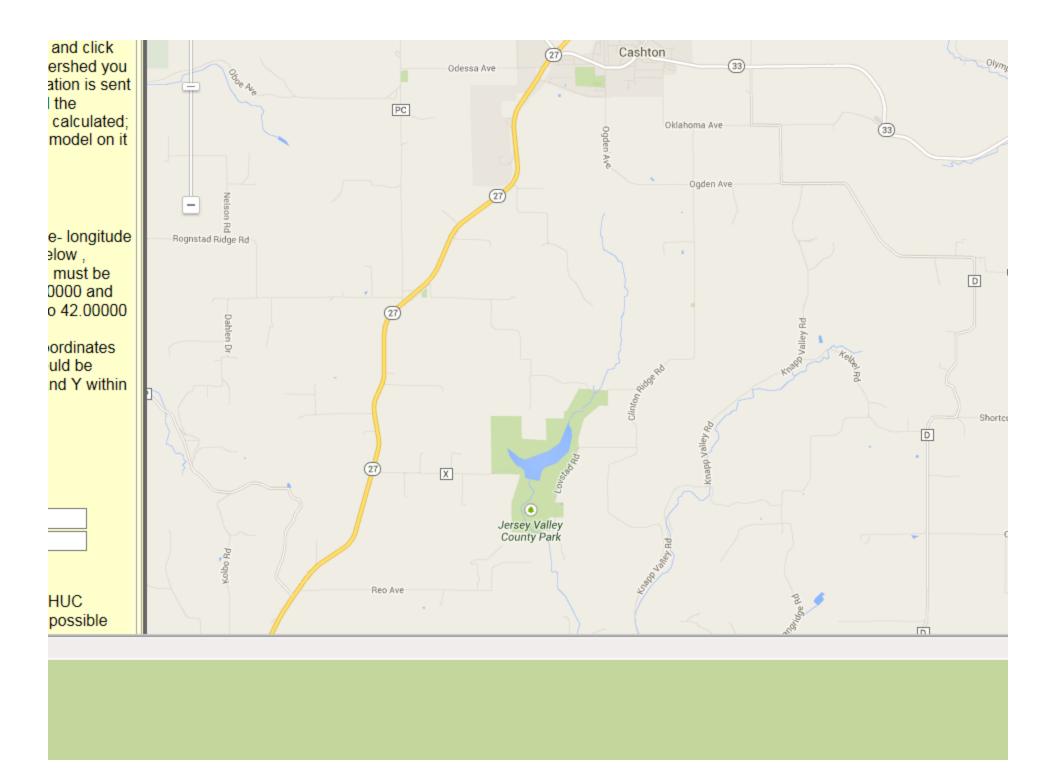

Viewer	Reach ID 600080487	□ ×	
Identify Tools	Zoom to Feature Pan to Feature Add to Selected		
M +	Details Attributes		🛆 Triangle 🖌 Undo 🗙 Clear All 🔡 Edit
Pan Zoom In 2	Field Name	Field Value	Arrow A Redo
	Annual precip., upstream watershed avg (mm, 1961-2000)	900	as Snapeme
Navigation	Annual air temp., upstream watershed avg (C, 1961-2000)	8.8	Edit Download Drawin
	Apr-Oct air temp, upstream watershed avg (C, 1961-2000)	16.5	A A A A A A A A A A A A A A A A A A A
	July air temp, upstream watershed avg (C, 1961-2000)	22.5	F Contractor Barrison
View Charting Vie	Runoff curve number, upstream watershed avg	78	
ne	Open Water (% of upstream watershed)	29.7	
	Developed, Open Space (% of upstream watershed)	16.3	
	Developed, Low Intensity (% of upstream watershed)	7.7	
	Developed, Medium Intensity (% of upstream watershed)	1.3	
WBIC 758300)	Developed, High Intensity (% of upstream watershed)	0.2	
<u>data</u> ut the Water	Barren Land (% of upstream watershed)	0.2	
	Deciduous Forest (% of upstream watershed)	15.9	TT-FILWilliams
30487	Evergreen Forest (% of upstream watershed)	0.0	
us Catchments	Mixed Forest (% of upstream watershed)	0.0	
	Shrub/Scrub (% of upstream watershed)	0.1	
	Grassland/Herbaceous (% of upstream watershed)	0.2	
	Pasture/Hay (% of upstream watershed)	6.3	
	Cultivated Crops (% of upstream watershed)	17.9	the Antana I have a law and a law and a law a
	Woody Wetlands (% of upstream watershed)	4.4	
	Emergent Herbaceous Wetlands (% of upstream watershed)	0.0	MARINA 12
	4	•	Prove and a second

3. REVIEW (OR EDIT HERE) EXPORT COEFFICIENTS


10


Export Coefficients are a very simple way to model the land

Annual Volume x Average Concentration

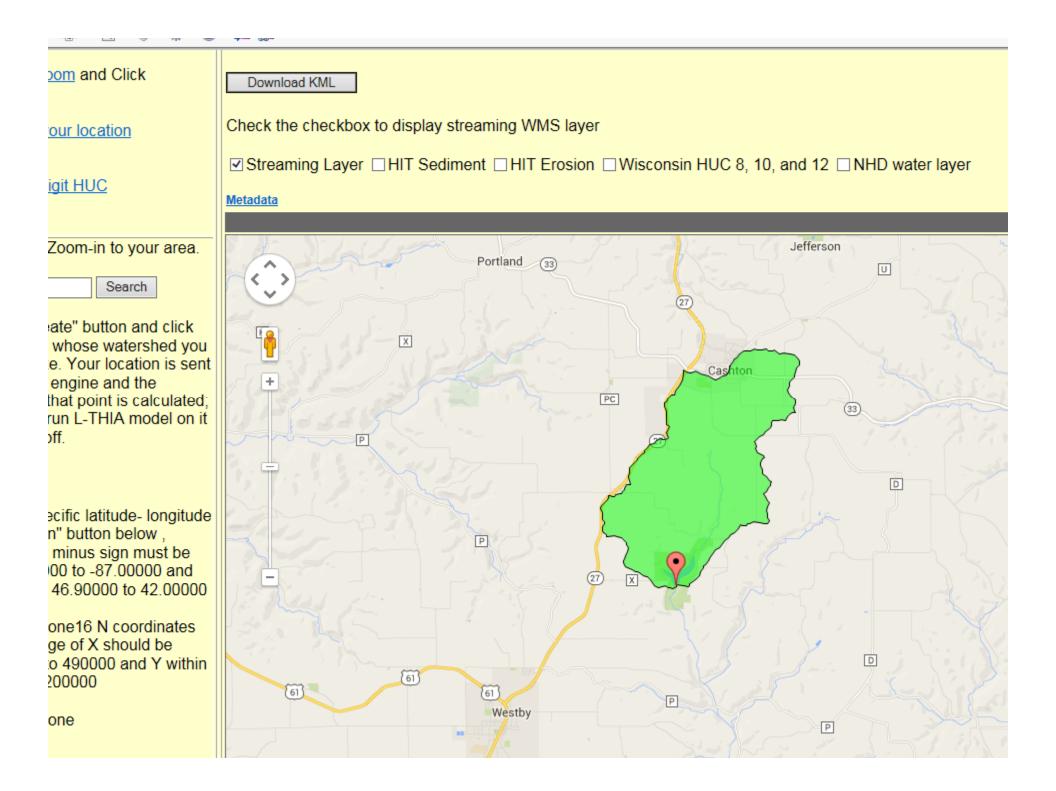


Very Simple

Very Complex

Watersheds

Watershed spatial data number for 10-digit watershed: 0707000602


Watershed spatial data number for 8-digit watershed: w07070006

Watershed spatial data name for 12-digit watershed: West Fork Kickapoo River

coordinates you selected in meters: X=193909.64978062932 and Y=4844300.413064256

Land use	Soil group	Area(acres)
Water	A	0
Water	В	10.6
Water	D	46.4
Commercial	В	23.2
Agriculture	A	1.4
Agriculture	В	2267.2
Agriculture	С	3.9
Agriculture	D	4.6
HD-Residential	В	167.7
LD-Residential	В	145.2
LD-Residential	D	2.2
Grass/Pasture	В	1535.8
Grass/Pasture	С	11.3
Grass/Pasture	D	5.9
Forest	А	2.7
Forest	В	644.9
Forest	С	0.4
Forest	D	25.4
Industrial	В	8.3
Total Area		4907.1

Image: State: Image: State: Image: State:		L-TH	HIA Basic Inpu	ut]	
LAND USE HYD. SOLL GROUP 1 2 3 Water/Wetlands V A 0	nentation • Nam	i: ity :		Wisconsin Vernon V	>		
SCENARIO 1 SCENARIO 2 SCENARIO 3 Water/Wetlands B 10.6	LAND USE	HYD. SOIL GROUP	1	2	3		
Water/Wetlands V 10.6 Water/Wetlands V 46.4 Commercial V 8 V Agricultural V 8 V High Density Residential V 8 V 145.2 Low Density Residential V 8 V 145.2 Grass/Pasture V 8 V Grass/Pasture V 0 V Grass/Pasture V 0 V Forest V 8 V Forest V 8 S Forest V 0 4 A Forest V 8 S SELECT LANDUSE A 0 SELECT LANDUSE A 0 SELECT LANDUSE A 0 SELECT LANDUSE A 0 A </td <td></td> <td></td> <td>SCENARIO 1</td> <td>SCENARIO 2</td> <td>SCENARIO 3</td> <td></td> <td></td>			SCENARIO 1	SCENARIO 2	SCENARIO 3		
Water/Wetfands V 46.4 Commercial V 8.4 Agricultural A.M 1.4 Agricultural V 8.4 Agricultural V 12267.2 Agricultural V 1247.2 Low Density Residential D V Orass/Pasture V 1252.2 Grass/Pasture V C Forest V D Forest V S Forest V C Industrial B 8.3 SELECT LANDUSE A Image: C SELECT LANDUSE A Image: C <	Water/Wetlands						
Commercial V B V 23.2 Agricultural V A 1.4 Agricultural V B 2267.2 Agricultural V C S Agricultural V C S Agricultural V V S Agricultural V V S Agricultural V V S Agricultural V V S High Density Residential B V 167.7 Low Density Residential B V 122.2 Grass/Pasture V 22 C Grass/Pasture V S S Forest V Q 2.7 Forest V Q 2.7 Forest V Q 2.7 Industrial B S S SELECT LANDUSE A S S SELECT LANDUSE A S S SELECT LANDUSE A S S A <td>[Water/Wetlands</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	[Water/Wetlands						
Agricultural Y A.Y 1.4 Agricultural Y B.Y 2267.2 Agricultural Y C.Y 3.9 Agricultural Y C.Y 3.9 Agricultural Y C.Y 3.9 Agricultural Y C.Y 3.9 High Density Residential Y B.Y 1167.7	Water/Wetlands						
Agricultural V B 2267.2	Commercial						
Agricultural V CV 39 Agricultural V DV 46 High Density Residential V B V 167.7 Image: Construction of the state of the sta							
Agricultural V 4.6 High Density Residential B 187.7 Low Density Residential B 145.2 Low Density Residential D 2.2 Grass/Pasture B 1535.8 Grass/Pasture C 11.3 Grass/Pasture D 5.9 Forest V 5.9 Forest A 2.7 Forest V 644.9 Forest C 0.4 Forest V 25.4 Industrial B 8.3 SELECT LANDUSE A Image: Control of the second seco							
High Density Residential B 167.7 Low Density Residential B 145.2 Low Density Residential D 2.2 Grass/Pasture V B Grass/Pasture C 11.3 Grass/Pasture O S.9 Grass/Pasture O S.9 Grass/Pasture O S.9 Forest A 2.7 Forest A 2.7 Forest B 644.9 Forest O 0.4 Forest O 0.4 Forest D 25.4 Industrial B B.3 SELECT LANDUSE A O SELECT LANDUSE A O Total Area 4908.1 0		and the second sec					
Low Density Residential V B V 1452							
Low Density Residential V D V 2.2							
Grass/Pasture V B V 1535.8 Image: Construction of the second seco							
Grass/Pasture V CV 11.3							
Grass/Pasture V D 5.9							
Forest V A V 27 Forest V B V 644.9 Forest V C V 0.4 Forest V D V 25.4 Industrial V B V 8.3 SELECT LANDUSE A V Image: Comparison of the second se							
Forest B Forest C O 04 Forest D 25.4 Industrial B 8.3 SELECT LANDUSE A SELECT LANDUSE							
Forest V C V 0.4 Forest V 25.4 Image: Comparison of the state of the st							
Forest V DV 25.4 Industrial B 8.3 SELECT LANDUSE A SELECT LANDUSE A SELECT LANDUSE A SELECT LANDUSE A Total Area 4908.1							
SELECT LANDUSE A SELECT LANDUSE	Forest						
SELECT LANDUSE A SELECT LANDUSE A SELECT LANDUSE A Total Area	Industrial	∨ В∨	8.3				
SELECT LANDUSE A SELECT LANDUSE A Total Area	SELECT LANDUSE	×					
SELECT LANDUSE A	SELECT LANDUSE	×					
Total Area 4908.1 0 0	SELECT LANDUSE						
	SELECT LANDUSE						
RUN Calibrated L-THIA		Total Area	4908.1	0	0		
RUN Calibrated L-THIA							
		RU	JN Calibrated L-THIA				

Search ...

Print Map

Printing

200208557

2000.54720

200054390

20 00 543 20

2000 53996

2000 53 536

2000 52880

200 0 53 19 1

200053161

200055941

200055368

20 00 546 59

200055046

200056

20.00

200055417

200055275

200055033

200 0 5 4 3 1 7

2000 538

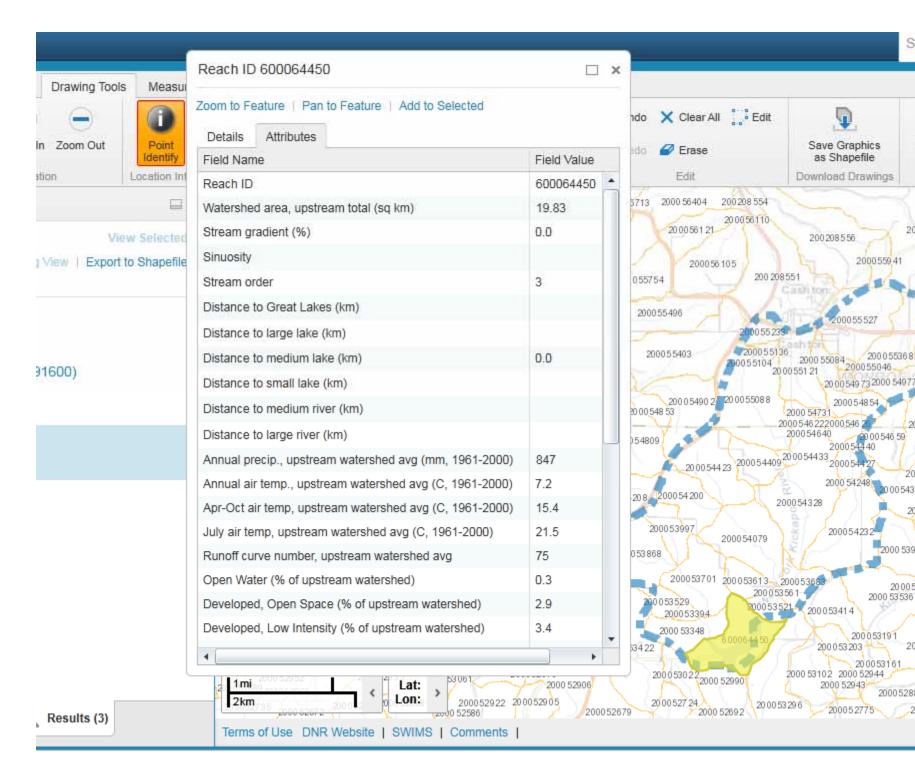
2000 537 2000 53766 200

200

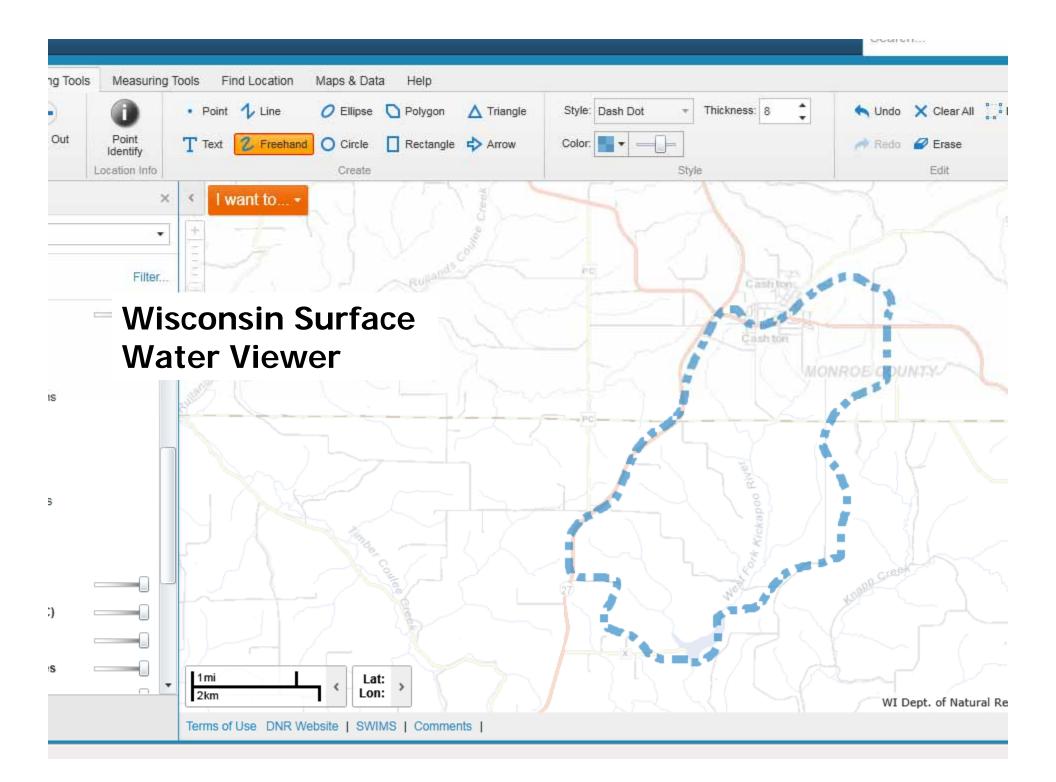
200053

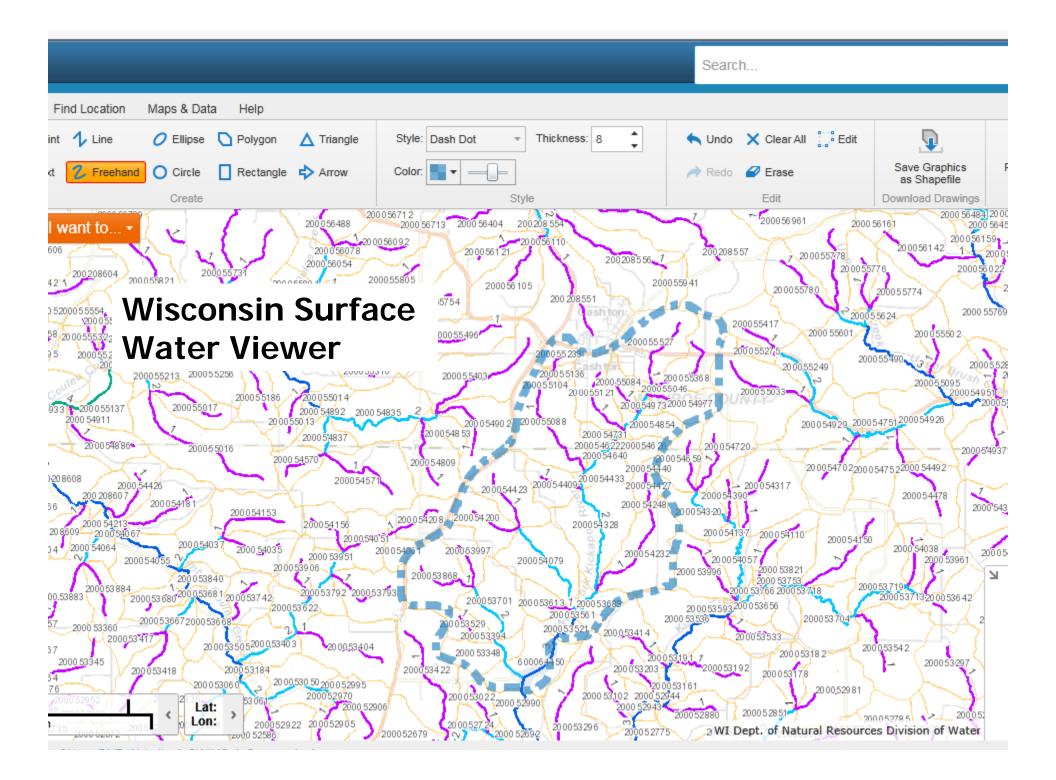
20 00 53 533

200052851


2 WI Dept. of Na

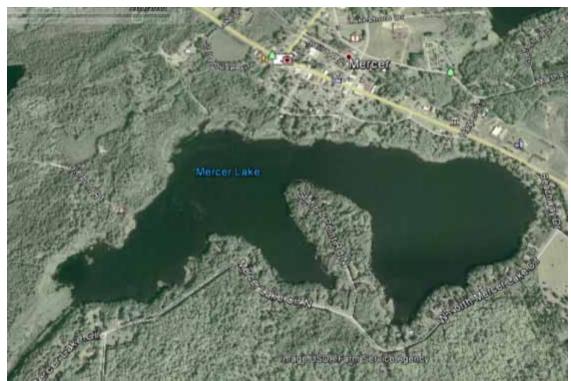
200054137 200054


200054057


20 00 53 593 200 0 536 56

200053192

← → Import And Anther	a a de la	ang balanak	Walking Manager
File Edit View Favorites Tools Help [™] ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■			
Surface Water Data Viewer	Reach ID 600064450	_ ×	
Show Show Pan Zoom In Zoom Out	Zoom to Feature Pan to Feature Add to Selected Details Attributes		ndo 🗙 Clear All 🔡 Ed
Layers Legend Identify Map Layers Navigation Location Inf	Field Name	Field Value	Edit
	Annual precip., upstream watershed avg (mm, 1961-2000)	847	
Results (3)	Annual air temp., upstream watershed avg (C, 1961-2000)	7.2	5713 2000 56404 200 208 55 20 00 5611
View History View Selected	Apr-Oct air temp, upstream watershed avg (C, 1961-2000)	15.4	20 00 561 21
Refine Results Table View Charting View Export to Shapefile	July air temp, upstream watershed avg (C, 1961-2000)	21.5	200056105
Select All Select None	Runoff curve number, upstream watershed avg	75	055754 20
S Vernon	Open Water (% of upstream watershed)	0.3	2000 55 496
★ County	Developed, Open Space (% of upstream watershed)	2.9	2000
	Developed, Low Intensity (% of upstream watershed)	3.4	200055403 2000551
S Jersey Valley Lake, (WBIC 1191600) Open Water Metadata	Developed, Medium Intensity (% of upstream watershed)	0.5	
Lake Page About the Water	Developed, High Intensity (% of upstream watershed)	0.1	200 0 5490 2 20 00 550
-	Barren Land (% of upstream watershed)	0.1	
S Reach ID 600064450	Deciduous Forest (% of upstream watershed)	13	054809
WI Hydro Data-Plus Catchments	Evergreen Forest (% of upstream watershed)	0.1	200054423 20005
	Mixed Forest (% of upstream watershed)	0.0	208 2000 54 200
	Shrub/Scrub (% of upstream watershed)	0.6	2000 5 3 9 9 7
	Grassland/Herbaceous (% of upstream watershed)	0.5	20005407
	Pasture/Hay (% of upstream watershed)	31.4	053868
	Cultivated Crops (% of upstream watershed)	47	200053701 20005361
	Woody Wetlands (% of upstream watershed)	0.1	200053394


File Edit View Favorites Tools He					
Surface Water Data Viewer	Reach ID 600091109		×		Search
🗄 🖢 Basic Tools Identify Tools 🛛 🛛	Zoom to Feature Pan to Feature Add to Selected				
🥃 🧾 👋 🕀	Details Attributes		A Triangle	K Undo 🗙 Datas Al 门 Edit	
Show Show Pan Zoom In 2	Field Name	Field Value	Arrow	A Rato @ Elase	Saler Graphica Print Map
Layers Legend	Annual precip., upstream watershed avg (mm, 1961-2000)	844	Allow		us.Shapelie
Map Layers Navigation	Annual air temp., upstream watershed avg (C, 1961-2000)	7.8	CONTRACTOR	Edit	Download Drawings Printing
Results (3)	Apr-Oct air temp, upstream watershed avg (C, 1961-2000)	15.7			- The All
< View History	July air temp, upstream watershed avg (C, 1961-2000)	21.8			X
Refine Results Table View Charting Vie	Runoff curve number, upstream watershed avg	78	- All I F		Real Day
Select All Select None	Open Water (% of upstream watershed)	7.3	N	ALL TO LAN	Les Last
S Dane	Developed, Open Space (% of upstream watershed)	6.5	12	Lat Estar 7	and the American
County	Developed, Low Intensity (% of upstream watershed)	9.4	1 K	- Providence	Part V VV
Contraction of Section	Developed, Medium Intensity (% of upstream watershed)	3.2	12.24	34 90	
Den Water Metadata	Developed, High Intensity (% of upstream watershed)	0.8	100		
Lake Page About the Water	Barren Land (% of upstream watershed)	0.1	1-12		
	Deciduous Forest (% of upstream watershed)	4.4	Any	-FT MIL	
Reach ID 600091109	Evergreen Forest (% of upstream watershed)	0.1	PRI		· · · · · · · · · · · · · · · · · · ·
WI Hydro Data-Plus Catchments	Mixed Forest (% of upstream watershed)	0.0			
	Shrub/Scrub (% of upstream watershed)	0.6			Xalar SALAR
	Grassland/Herbaceous (% of upstream watershed)	0.4	18 M		
	Pasture/Hay (% of upstream watershed)	18.2			Numo and
	Cultivated Crops (% of upstream watershed)	45.7)に対象の方見る
	Woody Wetlands (% of upstream watershed)	0.7			
	Emergent Herbaceous Wetlands (% of upstream watershed)	2			
	•		X.		2
	一方 信息公共1 关闭机2		1		
	2mi	Lat:		A Mind Mind	2

↔ → Martin http://dnrmaps.wi.gov/sl/?Viewer=SV	VDV		
File Edit View Favorites Tools Help			
🖥 • 🔊 • 🖃 🖶 • 🗗 • 🖉 •	- <u>N</u> N		
Surface Water Data Viewer			
🗎 🗁 Basic Tools Identify Tools Drawing	Reach ID 600003739		×
Show Show Pan Zoom In Zoom Ou	Zoom to Feature Pan to Feature Add to Selected Details Attributes		igle 🥎 Undo 🗙 Clear All 👫 Ed
Layers Legend	Field Name	Field Value	N AREdo 🖉 Erase
Map Layers Navigation	Annual precip., upstream watershed avg (mm, 1961-2000)	798	Edit
Results (3)	Annual air temp., upstream watershed avg (C, 1961-2000)	4.9	60009 0773
<< View History	Apr-Oct air temp, upstream watershed avg (C, 1961-2000)	13.5	
Refine Results Table View Charting View Ex	July air temp, upstream watershed avg (C, 1961-2000)	20	
Select All Select None	Runoff curve number, upstream watershed avg	58	S
	Open Water (% of upstream watershed)	31.5	
County	Developed, Open Space (% of upstream watershed)	2.9	
X	Developed, Low Intensity (% of upstream watershed)	1	6000
S Whitefish Lake, (WBIC 2694000)	Developed, Medium Intensity (% of upstream watershed)	0.0	hitefish
Open Water <u>Metadata</u> Lake Page About the Water	Developed, High Intensity (% of upstream watershed)	0.0	9 Bennett 9 Eake 60003
	Barren Land (% of upstream watershed)	0.0	600003960
S Reach ID 600003739	Deciduous Forest (% of upstream watershed)	38	Lake
WI Hydro Data-Plus Catchments	Evergreen Forest (% of upstream watershed)	8.7	Brueans (6000 04033
	Mixed Forest (% of upstream watershed)	10.4	60 000 406 6 2001 94661
	Shrub/Scrub (% of upstream watershed)	3	60000 4147
	Grassland/Herbaceous (% of upstream watershed)	1.4	
	Pasture/Hay (% of upstream watershed)	0.3	600004209
	Cultivated Crops (% of upstream watershed)	0.2	
	Woody Wetlands (% of upstream watershed)	2.1	20019375

← → ➡ http://dnrmaps.wi.gov/sl/?Viewer=SW	/DV				
File Edit View Favorites Tools Help					
🚹 • 🔊 • 🖃 🖶 • 🗗 • 🖉 •	· 🔊 🕅				
Surface Water Data Viewer	Reach ID 600091541		×		
Basic Tools Identify Tools Drawing Basic Tools Identify Tools Drawing Basic Tools Identify Tools Drawing Pan Zoom In Zoom Ou	Zoom to Feature Pan to Feature Add to Selected Details Attributes		igle		X Clear All
Layers Legend	Field Name	Field Value	N	Aredo Redo	Erase
Map Layers Navigation	Annual precip., upstream watershed avg (mm, 1961-2000)	825	•		Edit
Results (3)	Annual air temp., upstream watershed avg (C, 1961-2000)	4.7	1-4	20019890	
« View History	Apr-Oct air temp, upstream watershed avg (C, 1961-2000)	13.3		200 198869	
	July air temp, upstream watershed avg (C, 1961-2000)				
Refine Results Table View Charting View Ex Select All Select None	Runoff curve number, upstream watershed avg	54		16	
	Open Water (% of upstream watershed)	5		26	Upper Saint
S Douglas	Developed, Open Space (% of upstream watershed)	3.4		18	
☆ County	Developed, Low Intensity (% of upstream watershed)	5.4		8	
S Upper Saint Croix Lake, (WBIC 2747300	Developed, Medium Intensity (% of upstream watershed)	0.8	_	~	
	Developed, High Intensity (% of upstream watershed)	0.1	Ave		
Lake Page About the Water	Barren Land (% of upstream watershed)	0.0			
(\$) Reach ID 600091541	Deciduous Forest (% of upstream watershed)	43.5	2		
👾 WI Hydro Data-Plus Catchments	Evergreen Forest (% of upstream watershed)	7	2		
	Mixed Forest (% of upstream watershed)	14.7			
	Shrub/Scrub (% of upstream watershed)	6.3		000	91541
	Grassland/Herbaceous (% of upstream watershed)	0.7			3
	Pasture/Hay (% of upstream watershed)	1.8	8		
	Cultivated Crops (% of upstream watershed)	1			
	Woody Wetlands (% of upstream watershed)	9.6			

WiLMS Example III Mercer Lake Iron Co

- Mercer Lake, Iron Co
- Area = 179 acres
- Volume = 1793 acre-feet
- P GSM=20 ug/l

WiLMS Example III

- Mercer Lake, Iron Co
- Area = 179 acres
- Volume = 1793 acre-feet
- P GSM=20 ug/l
- Watershed

Land Use	Acres
Agriculture	40
Low Den Residential	460
Med Den Residential	150
Grassland	150
Water/Wetlands	1180
Forest	5720

 \rightarrow Find this...

- What is water loading rate (feet/year)?
- What is water residence time (years)?
- What is your "most likely" P loading?
- What is P loading in mg/m2-year of lake surface?
- Compare your lake P prediction with the observed

😵 Phosphorus Load				
General Hydrolog	ic & Morphometri	c Module Phosphorus Module (N	PS) Phospho	rus Module (PS) Total Loading
	English		Metric	
acre	7700.0	Tributary Drainage Area:	3.1E+007	m^2
in.	14.00	Total Unit Runoff:	0.36	m
acre-ft	8983.3	Annual Runoff Volume:	1.1E+007	m^3
acre	179.0	Lake Surface Area <as>:</as>	724387.3	m^2
acre-ft	1793.0	Lake Volume <v>:</v>	2.2E+006	m^3
ft	10.0	Lake Mean Depth <z>:</z>	3.1	m
in.	7.0	Precipitation - Evaporation:	0.2	m
acre-ft/year	9087.8	Hydraulic Loading:	1.1E+007	m^3/year
fl/year	50.8	Areal Water Load <qs>:</qs>	15.5	m/year
	ning Rate <p≻: sidence Time:</p≻: 	5.07 1/year 0.20 year		
	🗸 Lea	ave 👔 Write Results 孝	Help	Select A Graph

Reset Defaults		7700.0 Total Drainage Area Assigned A Land Cover								
		Loa	ding (kg/ha/y	ear)		Loa	ding (kg-yea	r)		
Land Use	Area (acre)	Low	Most Likely	High	Loading %	Low	Most Likely	High		
Row Crop AG	40.0	0.50	1.00	3.00	4.5	8	16	49		
Mixed AG	0.0	0.30	0.80	1.40	0.0	0	0	0		
Pasture/Grass	150.0	0.10	0.30	0.50	5.0	6	18	30		
HD Urban (1/8 Ac)	0.0	1.00	1.50	2.00	0.0	0	0	0		
MD Urban (1/4 Ac)	150.0	0.30	0.50	0.80	8.4	18	30	49		
Rural Res (>1 Ac)	460.0	0.05	0.10	0.25	5.2	9	19	47		
Wetlands	1180.0	0.10	0.10	0.10	13.2	48	48	48		
Forest	5720.0	0.05	0.09	0.18	57.7	116	208	417		
User Defined 1	0.0	0.00	0.00	0.00	0.0	0	0	0		
User Defined 2	0.0	0.00	0.00	0.00	0.0	0	0	0		
User Defined 3	0.0	0.00	0.00	0.00	0.0	0	0	0		
User Defined 4	0.0	0.00	0.00	0.00	0.0	0	0	0		
User Defined 5	0.0	0.00	0.00	0.00	0.0	0	0	0		
User Defined 6	0.0	0.00	0.00	0.00	0.0	0	0	0		
Laka Surfana	170 0	0.10	0.20	1 00	6.0	7	22	72		
% NPS Change:	0% ,, -100-4			-30 -20 -10	0 0 10 2	0 30 40	50 60 70	80 90 100		

	lydrologic & Morphometric Mod	ule Phosphorus M	odule (NPS)	Phosphor	us Module (PS)	Total Loading
	Description	Low	Most Likely	High	Loading %	
Total L	oading (Ib)	468.3	796.3	1567.2	100.0	
Total L	.oading (kg)	212.4	361.2	710.9	100.0	
Areal L	_oading (Ib/ac-year)	2.62	4.45	8.76		
Areal L	_oading (mg/m^2-year)	293.25	498.62	981.38		
Total F	PS Loading (Ib)	0.0	0.0	0.0	0.0	
Total F	PS Loading (kg)	0.0	0.0	0.0		
	VPS Loading (Ib)	452.3		1407.5		
Total N	NPS Loading (kg)	205.2	339.5	638.5	100.0	
% PS	0% , , , , , , , , , , , , , , , , , , ,	70 -60 -50 -40 -30	-20 -10 0	· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	50 70 80 90
Chang			j			

Observed spring overturn total phosphorus (SPO): 0.0 mg/m^3 Numberg Model Input - Observed growing season mean phosphorus (GSM): 20.0 mg/m^3 Img/m^3 Img/m^3 Back calculation for SPO total phosphorus: 0.0 mg/m^3 Img/m^3 Img/m^3 Back calculation GSM phosphorus: 0.0 mg/m^3 Most Likely High Predicted % Dif. Confidence Parameter Back Back Model									
Low Total P (mg/m^3)	Most Likely Total P (mg/m^3)	High Total P (mg/m^3)	Predicted -Observed (mg/m^3)	% Dif.	Confidence Lower Bound	Confidence Upper Bound	Parameter Fit?	Back Calculation (kg/year)	Model Type
13	23	45	3	15	14	39	FIT	0	GSM
15	24	44	4	20	7	69	FIT	1	GSM
14	22	38	2	10	7	63	FIT	1	GSM
10	17	33	-3	-15	10	29	FIT	0	GSM
16	28	55	8	40	18	47	FIT	0	GSM
12	21	41	1	5	13	36	FIT	0	GSM
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
13	20	34	10	100	10	36	FIT	0	ANN
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
10	16	28	6	60	8	29	FIT	0	ANN
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
10	18	35	-2	-10	10	32	FIT	0	ANN
h	3SM): orus: 0.0 Low Total P (mg/m^3) 13 15 14 10 16 12 N/A 13 N/A 13 N/A 10 N/A	SSM): 20.0 mg/m^ iorus: 0.0 mg/m^ Iorus: Iorus: mg/m^ Iorus: Iorus: Iorus: Iorus: Iorus: Iorus:	SSM): 20.0 mg/m^3 Est. Iorus: 0.0 mg/m^3 % C Iorus: 0.0 Most Likely Iorug/m^3) High Total P (mg/m^3) 13 23 45 44 14 22 38 10 10 17 33 16 28 12 21 41 N/A N/A N/A N/	SSM): 20.0 mg/m^3 Est. Gross Int. Load lorus: 0.0 mg/m^3 0 0 kg lorus: 0.0 mg/m^3 % Confidence Rar Low Most Likely High Predicted -Observed Total P (mg/m^3) 23 45 33 13 23 45 33 15 24 44 4 14 22 38 22 10 17 33 -33 16 28 55 8 12 21 41 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	SSM): 20.0 mg/m^3 Est. Gross Int. Loading: 0 kg Iorus: 0.0 mg/m^3 % Confidence Range: 70 Low Most Likely High Predicted % Dif. Total P (mg/m^3) % Confidence Range: 70 13 23 45 3 15 15 24 44 4 20 14 22 38 2 10 10 17 33 -3 -15 16 28 55 8 40 12 21 41 1 5 N/A N/A N/A N/A N/A 13 20 34 10 100 N/A N/A N/A N/A A	SSM): 20.0 mg/m^3 Est. Gross Int. Loading: 0 kg norus: 0.0 mg/m^3 % Confidence Range: 70 Low Most Likely High Predicted % Dif. Confidence Lower Bound Total P (mg/m^3) (mg/m^3) Predicted % Dif. Confidence Lower Bound 13 23 45 3 15 14 15 24 44 4 20 7 14 22 38 2 10 7 10 17 33 -3 -15 10 16 28 55 8 40 18 12 21 41 1 5 13 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 13 20 34 10 100 10 N/A N/A N/A N/A N/A N/A <td< td=""><td>SM):20.0mg/m^3Est. Gröss Int. Loading: 0kgorus:0.0mg/m^3% Dif.Confidence Lower BoundConfidence Upper Bound10Most Likely Total P (mg/m^3)Predicted Observed (mg/m^3)% Dif.Confidence Lower Bound132344531143914223445315Confidence Upper Bound132345315143914223821029142345315143914223821014223821422382142238216285840181628</td></td<>	SM):20.0mg/m^3Est. Gröss Int. Loading: 0kgorus:0.0mg/m^3% Dif.Confidence Lower BoundConfidence Upper Bound10Most Likely Total P (mg/m^3)Predicted Observed (mg/m^3)% Dif.Confidence Lower Bound132344531143914223445315Confidence Upper Bound132345315143914223821029142345315143914223821014223821422382142238216285840181628		

Water Quality, Hydrology, and Simulated Response to Changes in Phosphorus Loading of Mercer Lake, Iron County, Wisconsin, with Special Emphasis on the Effects of Wastewater Discharges

By Dale M. Robertson, Herbert S. Garn, William J. Rose, Paul F. Juckem, and Paul C. Reneau

Point Sources

- Let's assume this lake had a WWTP discharge
 - 37,400 gallon/day
 - 10 mg/l P
- We'll need to do some math...
 - That's (37,400 gal/d)(365 d/yr)(1m3/264 gal)
 - Or = 52,000 m3/year
 - And, (52,000 m3/yr)(1000 liter/m3)(10mg/l)(1kg/1000000mg)

- Or = 520 kg/year

😵 Phosphorus Loading Data Setup									
General Hydrologic & Morphometric	Total Loading								
	_								
Point Sources									
User Defined 1	52000	520	520	520	59.0				
User Defined 2	0.0	0.0	0.0	0.0	0.0				
User Defined 3	0.0	0.0	0.0	0.0	0.0				
User Defined 4	0.0	0.0	0.0	0.0	0.0				
User Defined 5	0.0	0.0	0.0	0.0	0.0				
User Defined 6	0.0	0.0	0.0	0.0	0.0				
Description		Low	Most Likely	High	Loading %				
Septic Tank Output (kg/capita-year)		0.30	0.50	0.80					
# capita-years	0.0								
% Phosphorus Retained by Soil		98.0	90.0	80.0					
Septic Tank Loading (kg/year)		0.00	0.00	0.00	0.0				
% PS 0% Change: -100 -90 -	80 -70 -60 -5	0 -40 -30 -	-20 -10 0	10 20 30	40 50 60	0 70 80 90 100			
🔜 Set User Defineds 🗸 Lea	ve 🔀 Write	Results	? <u>H</u> elp	E Selec	AGraph				

	& Morphometric Module	Phosphorus M	odule (NPS)	Phosphore	us Module (PS)	Total Loading
	Description	Low	Most Likely	High	Loading %	
Total Loading (It))	1614.7	1942.7	2713.6	100.0	
Total Loading (k	g)	732.4	881.2	1230.9	100.0	
Areal Loading (II	b/ac-year)	9.02	10.85	15.16		
Areal Loading (n	ng/m^2-year)	1011.10	1216.47	1699.22		
Total PS Loadin	g (lb)	1146.4	1146.4	1146.4	59.0	
Total PS Loadin	520.0	520.0	520.0	59.0		
Total NPS Loadi	452.3	748.4	1407.5	5 41.0		
Total NPS Loadi	205.2	339.5	638.5	41.0		
	0%		-20 -10 0	10 20		50 70 80 90
% PS Change:	-100 -90 -80 -70 -6					

Table 5.Near-surface, summer-awbased on data from the East Basin c

[mg/L, milligrams per liter; µg/L, microgr:

Phosphorus Predictions & Uncertainty A Observed spring overturn total phosphorus Observed growing season mean phosphorus Back calculation for SPO total phosp	Year	Total phosphorus (mg/L)						
Back calculation GSM phose		mg/m^		Confidence Rar	ge: 70		1973	0.040
Lake Phosphorus Model	Low	Most Likely	High	Predicted	% Dif.	Confidence	1974	0.030
Luke Phospholus model	Total P (mg/m^3)	Total P	Total P (mg/m^3)	-Observed	<i>/•</i> Dii.	Lower Bound	1975	0.020
Walker, 1987 Reservoir	36	44	61	24	120	31	1976	0.030
Canfield-Bachmann, 1981 Natural Lake	45	52	69	32	160	16	1979	0.027
Canfield-Bachmann, 1981 Artificial Lake	39	44	57	24	120	14		
Rechow, 1979 General	33	40	56	20	100	27	2000	0.015
Rechow, 1977 Anoxic	56	67	94	47	235	48	2001	
Rechow, 1977 water load<50m/year	42	51	71	31	155	35	2002	0.018
Rechow, 1977 water load>50m/year	N/A	N/A	N/A	N/A	N/A	N/A		0.010
Walker, 1977 General	N/A 35	N/A 41	N/A 54	N/A 31	N/A 310	N/A 23	2004	
Vollenweider, 1982 Combined OECD	N/A	41 N/A	54 N/A	N/A		23 N/A	2005	_
Dillon-Rigler-Kirchner Vollenweider, 1982 Shallow Lake/Res.	29	34	46	24	240	19	2006	0.017
Larsen-Mercier, 1976	N/A	N/A	N/A	N/A	N/A	N/A	2006	0.017
Nurnberg, 1984 Oxic	36	43	60	23	115	27	2007	0.017
					1		2008	0.022
🖌 Finished 🕅 🦓 Write Re	sults 📃	Display Param	eter Values	<u>? H</u> elp			2009	0.024
							2010	0.018
							2011	0.019
							Average 2006–10	0.019
							Average	0.023

Slider Bar on Point Sources

- Return to Setup
- PS Tab (Phosphorus Module (PS))
- Do 75% reduction in point sources
- Then look at P prediction

Phosphorus (kg/year)										
Point Sources	Water Load (m^3/year)	Low	Most Likely	High	Loading %					
ser Defined 1	52000.0	520.0	520.0	520.0	26.5					
ser Defined 2	0.0	0.0	0.0	0.0	0.0					
Iser Defined 3	0.0	0.0	0.0	0.0	0.0					
Iser Defined 4	0.0	0.0	0.0	0.0	0.0					
Jser Defined 5	0.0	0.0	0.0	0.0	0.0					
Jser Defined 6	0.0	0.0	0.0	0.0	0.0					
						-				
escription		Low	Most Likely	High	Loading %					
eptic Tank Output (kg/capita-year)		0.30	0.50	0.80						
capita-years	0.0									
6 Phosphorus Retained by Soil		98.0	90.0	80.0						
Septic Tank Loading (kg/year)		0.00	0.00	0.00	0.0					
% PS -75% -75% -70 -80 -70 -80 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100										

eral Hydrologic & Morphometric Module I	Phosphorus M	odule (NPS)	Phosphoru	is Module (PS)	Total Loading			
Description	Low	Most Likely	High	Loading %				
Total Loading (Ib)	754.9		1853.8	100.0				
Total Loading (kg)	342.4	491.2	840.9	100.0				
Areal Loading (Ib/ac-year)	4.22	6.05	10.36					
Areal Loading (mg/m^2-year)	472.71	678.08	1160.84					
Total PS Loading (Ib)	286.6	286.6	286.6	26.5				
Total PS Loading (kg)	130.0	130.0	130.0	26.5				
Total NPS Loading (Ib)	452.3	748.4	1407.5	73.5				
Total NPS Loading (kg)	205.2	339.5	638.5	73.5				
% PS -75% -75% Change: -100 -90 -80 -70 -80 -50 -40 -30 -20 -10 0 10 20 30 40 50 50 70 80 90 100								
Change: -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 10 % NPS 0% -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 10								

Table 5. Near-surface, summer-aw based on data from the East Basin c

[mg/L, milligrams per liter; µg/L, microgr:

Phosphorus Predictions & Uncertainty Observed spring overturn total phosphorus Observed growing season mean phosphorus	Year	Total phosphorus (mg/L)						
Back calculation for SPO total phose		20.0 mg/m^ mg/m^		0 kg			1973	0.040
Back calculation GSM phosphorus: 0.0 mg/m^3 % Confidence Range: 70							1974	0.030
Lake Phosphorus Model	Low Total P	Most Likely Total P	High Total P	Predicted -Observed	% Dif.	Confidence Lower	1975	0.020
	(mg/m^3)	(mg/m^3)	(mg/m^3)	(mg/m^3)		Bound	1976	0.030
Walker, 1987 Reservoir	20	29	49	9	45		1979	0.027
Canfield-Bachmann, 1981 Natural Lake	23	32	50	12	60	10		
Canfield-Bachmann, 1981 Artificial Lake	21	28	43	8	40	9	2000	0.015
Rechow, 1979 General	16	22	38	2	10	14	2001	
Rechow, 1977 Anoxic	26	37	64	17	85		2002	0.018
Rechow, 1977 water load<50m/year	20	28 N/A	49 N/A	8 N/A	40 N/A	18 N/A	2002	0.018
Rechow, 1977 water load>50m/year	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	2004	
Walker, 1977 General Vollenweider, 1982 Combined OECD	19	25	39	15	150	14	2005	_
Dillon-Rigler-Kirchner	N/A	N/A	N/A	N/A	N/A		C156 52	
Vollenweider, 1982 Shallow Lake/Res.	15	20	33	10	100	11	2006	0.017
Larsen-Mercier, 1976	N/A	N/A	N/A	N/A	N/A	N/A	2007	0.017
Nurnberg, 1984 Oxic	17	24	41	4	20	14	2008	0.022
🖌 Finished 🛛 🛞 Write R	esults	Display Param	eter Values	? <u>Н</u> еlp	1		2009	0.024
					_		2010	0.018
							2011	0.019
							Average 2006–10	0.019
							Average 2008–09	0.023

- WiLMS History
 - 1990s– Spreadsheet
 - 2005 Current Version
 - 2015 Updated Version

😵 Home
File Directory Help
Williams
DEPT. OF NATURAL RESOURCES Wisconsin Lake Modeling Suite
The WiLMS model structure is organized into four (4) principal parts
Scroll over each for details
Lake Total Phosphorus Prediction Prediction Expanded Trophic Response LEAP
Save
Front-end portion of the model for lake and watershed inputs. P prediction/Uncertainty Analysis

Similar Look

🐮 Т	otal Phosp	ohorus Predict	tion			No. of Concession, Name of Street, or other		
S	etup Pred	dictions and Uno	certainty Analysis Wat	er and Nutrient Outflow				
	General	Hydrologic and	Morphometric Module	Phosphorus Module (NPS)	Phosphorus Module (PS)	Total Loading		
	Ente	r Credenti	ials					
		Name:						
		Location:						
		Date:	Wednesday, April	23, 2014 🔲 🗸				
	Land U	Jse Metadata:						
	Dofe	ult Data						
	Dela							
		File Name:		Load File				
	Locatio	on for Usage:		•				
		WBIC:						
	W	atershed ID:						
		SPO:	0					
		GSM:	0					
							Back N	Vext
G	araphs					port		
		% Load (Pie)	% Load (Bar)	Total Load	PS vs. NPS	PDF Excel	Cancel	Finish
WiLl	MS: Wiscor	nsin Lakes Mo	deling Suite					.::

Total Phosphorus Prediction						
Setup Predictions and Uncertainty Analysis Water and Nutrient Outflow						
General Hydrologic and Morphome	General Hydrologic and Morphometric Module Phosphorus Module (NPS) Phosphorus Module (PS) Total Loading					
	Enter Data		Metr	ic		
acre	0	Tributary Drainage Area	a 0.000	m^2		
in.	0	Total Unit Runoff	0.000	m		
acre-ft (0.000	Annual Runoff Volume	0.000	m^3		
acre	0	Lake Surface Area <as></as>	> 0.000	m^2		
acreft	0	Lake Volume <v></v>	0.000	m^3		
ft	0.000	Lake Mean Depth <z></z>	0.000	m		
in.	0	Precipitation - Evaporat	0.000	m		
acre-ft/year	0.000	Hydraulic Loading	0.000	m^3/year		
ft/year	0.000	Areal Water Load <qs></qs>	0.000	m/year		
		ing Rate : 0.000	1/year			
	Water Res	sidence Time: 0.000	year			
				Back	Next	
Graphs % Load (Pie) % L	Load (Bar) To	otal Load PS vs. NPS	Expo	t PDF Excel Ca	ancel Finish	
WiLMS: Wisconsin Lakes Modeling Su	lite					

Example IV

- 833 acre lake, Douglas County
- Mean depth of 29 feet
- Measured TP 0.007 mg/l (GSM & SPO)
- 520 acre watershed
 - Assume all forest
- Extra 1200 acres of groundwater contributing area
- Septic Systems

Groundwater & Septic Systems

General Ideas

- Groundwater contributing area may not be the same as the surface watershed
 - Treat as a point source, or
 - Treat as another land use (eg forest)
- Conventional septic systems release phosphorus... even functioning as designed
 - The phosphorus can be retained in the soil profile and the groundwater aquifer
 - The question is... how much "retention" and what's the best way to describe it?

Groundwater

- For WiLMS need two things for any contributing area / activity
 - Flow rate of water
 - Mass of phosphorus
- For a landuse– that's already included in the
 - Area & the "runoff"
 - Export rate (kg/ha-yr)

<u>Groundwater... if not in</u> <u>surface watershed</u>

• Let's look at an acre of land, assume 14" of groundwater "produced"/yr and a groundwater P concentration of 0.015 mg/l.

Groundwater

- Let's look at an acre of land, assume 14" of groundwater "produced"/yr and a groundwater P concentration of 0.015 mg/l.
 - Point Source Approach (need a flow and mass/year)
 - That 14"/year is about 1,440 m3/year for each acre
 - At 0.015 mg/l, that is about 0.02 kg/yr for every acre

Groundwater

- Let's look at an acre of land, assume 14" of groundwater "produced"/yr and a groundwater P concentration of 0.015 mg/l.
 - Point Source Approach (need a flow and mass/year)
 - That 14"/year is about 1,440 m3/year for each acre
 - At 0.015 mg/l, that is about 0.02 kg/yr for every acre
 - Other Land Use Approach (enter as area, export rate)
 - At 14" and 0.015 mg/, that is about 0.05 kg/ha-yr
 - (...why is that about the same as a forested land use?)
 - important... don't double count!

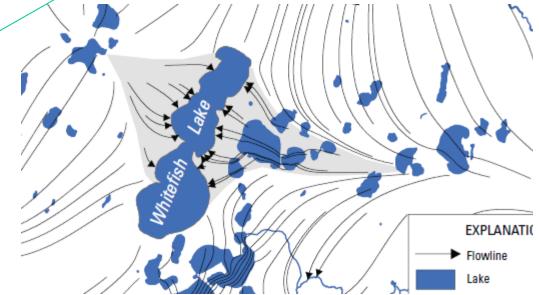
Septic Systems

WilMS Approach

- Assume a number of **people-years**
 - Sum of (# of people)*(fraction of year they use lake)
- Assume a kilogram of P/person-year
 - Usually something like 0.5 kg (range 0.3 to 0.8)

- Assume a fraction of the P retained

- Will depend on soil- more surface area- more retention
- Also effect of iron- more iron- more retention
- Some evidence that more basic soils-less retention
- But high calcium could tie up some P
- Probably some complex function of pH / redox /other
- Assume 70% (range from 50% to 90%)


Example IV

- 833 acre lake, Douglas County
- Mean depth of 29 feet
- Measured TP 0.007 mg/l (GSM & SPO)
- 520 acre watershed
 - Assume all forest

1,728,000 m3/yr

24 kg/yr

- Extra 1200 acres of groundwater contributing area
 - Use point source
 - 1440 m3/yr-acre (14 inch/yr)
 - 0.02 kg/yr-acre (0.015 mg/l)
- Septic Systems
 - 80 capita-years
 - 70% retention
 - (range 90% to 50%)

😵 Phosphorus Loading Data Setup						
General Hydrologic & Morphometric Module Phosphorus Module (NPS) Phosphorus Module (PS) Total Loading						
English Metric						
acre	520.0	Tributary Drainage Area:	2.1E+006	m^2		
in.	13.60	Total Unit Runoff:	0.35	m		
acre-ft	589.3	Annual Runoff Volume:	726932.1	m^3		
acre	833.0	Lake Surface Area <as>:</as>	3.4E+006	m^2		
acre-ft	24000.0	Lake Volume <v>:</v>	3.0E+007	m^3		
ft	28.8	Lake Mean Depth <z>:</z>	8.8	m		
in.	5.2	Precipitation - Evaporation:	0.1	m		
acre-ft/year	1923.2	Hydraulic Loading:	2.4E+006	m^3/year		
ft/year	2.3	Areal Water Load <qs>:</qs>	0.7	m/year		
Lake Flushing Rate : 0.08 1/year Water Residence Time: 12.48 year						
	🗸 Lea	ave 💦 Write Results 孝	Help	SelectAGraph		

Reset Defaults 520.0 Total Drainage Area Assigned A Land Cover								
		Loa	ding (kg/ha-	year)		Loa	ding (kg-yea	r)
Land Use	Area (acre)	Low	Most Likely	High	Loading %	Low	Most Likely	High
Row Crop AG	0.0	0.50	1.00	3.00	0.0	0	0	0
Mixed AG	0.0	0.30	0.80	1.40	0.0	0	0	0
Pasture/Grass	0.0	0.10	0.30	0.50	0.0	0	0	0
HD Urban (1/8 Ac)	0.0	1.00	1.50	2.00	0.0	0	0	0
MD Urban (1/4 Ac)	0.0	0.30	0.50	0.80	0.0	0	0	0
Rural Res (>1 Ac)	0.0	0.05	0.10	0.25	0.0	0	0	0
Wetlands	0.0	0.10	0.10	0.10	0.0	0	0	0
Forest	520.0	0.05	0.09	0.18	12.1	11	19	38
User Defined 1	0.0	0.00	0.00	0.00	0.0	0	0	0
User Defined 2	0.0	0.00	0.00	0.00	0.0	0	0	0
User Defined 3	0.0	0.00	0.00	0.00	0.0	0	0	0
User Defined 4	0.0	0.00	0.00	0.00	0.0	0	0	0
User Defined 5	0.0	0.00	0.00	0.00	0.0	0	0	0
User Defined 6	0.0	0.00	0.00	0.00	0.0	0	0	0
Laka Surfana	833.0	0.10	0.20	1 00	64.8	2/	101	227
% NPS Change:	0% , , -100 -9	0 -80 -70	-60 -50 -40	-30 -20 -10	, , , , , , 0 0 10 20	, , , , , , 0 30 40	50 60 70	80 90 100

Point Sources	F1	iosphorus (k	(g/year)	-		
Point Sources	Water Load (m^3/year)	Low	Most Likely	High	Loading %	*
User Defined 1	1728000.0	24.0	24.0	24.0	15.4	
User Defined 2	0.0	0.0	0.0	0.0	0.0	
User Defined 3	0.0	0.0	0.0	0.0	0.0	
User Defined 4	0.0	0.0	0.0	0.0	0.0	
User Defined 5	0.0 0	0.0	0.0	0.0	0.0	
User Defined 6	0.0	0.0	0.0	0.0	0.0	
Description		Low	Most Likely	High	Loading %	
Septic Tank Output (kg/capita-year)		0.30	0.50	0.80		
# capita-years	80					
% Phosphorus Retained by Soil		70	70	70		
Septic Tank Loading (kg/year)		7.20	12.00	19.20	7.7	

Phosphorus Loading						
eneral Hydrolog	ic & Morphometric Module	Phosphorus M	odule (NPS)	Phosphoru	us Module (PS)	Total Loading
	Description	Low	Most Likely	High	Loading %	
Total Loading	(lb)	166.3	344.1	922.0	100.0	
Total Loading	(kg)	75.4	156.1	418.2	100.0	
Areal Loading	(Ib/ac-year)	0.20	0.41	1.11		
Areal Loading	(mg/m^2-year)	22.38	46.30	124.06		
Total PS Load	ling (lb)	52.9	52.9	52.9	15.4	
Total PS Load	ling (kg)	24.0	24.0	24.0	15.4	
Total NPS Loa	ading (Ib)	23.2	41.8	83.5	76.9	
Total NPS Loa	ading (kg)	10.5	18.9	37.9	76.9	
% PS 0%						
% NPS Change:	0% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	50 -50 -40 -30	-20 -10 0	10 20	30 40 50 6	50 70 80 <u>9</u> 0 10
onango.						

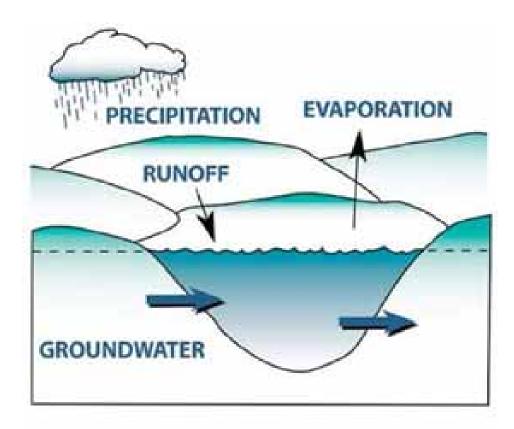
Phosphorus Predictions & Uncertainty Analysis Observed spring overturn total phosphorus (SPO): 7.0 mg/m^3 Numberg Model Input - Observed growing season mean phosphorus (GSM): 7.0 mg/m^3 Numberg Model Input - Back calculation for SPO total phosphorus: 0.0 mg/m^3 0 kg Back calculation GSM phosphorus: 0.0 mg/m^3 % Confidence Range: 70									
Low Total P (mg/m^3)	Most Likely Total P (mg/m^3)	High Total P (mg/m^3)	Predicted -Observed (mg/m^3)	% Dif.	Confidence Lower Bound	Confidence Upper Bound	Parameter Fit?	Back Calculation (kg/year)	Model Type
9	18	49	11	157	11	38	Tw	0	GSM
7	12	22	5	71	4	35	FIT	1	GSM
9	13	22	6	86	4	37	FIT	1	GSM
2	4	10	-3	-43	2	8	L	0	GSM
9	19	50	12	171	11	39	FIT	0	GSM
2	5	13	-2	-29	3	10	FIT	0	GSM
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
8	16	43	9	129	8	35	FIT	0	SPO
7	13	28	6	86	6	26	FIT	0	ANN
6	13	34	6	86	7	27	L qs p	0	SPO
5	10	23	3	43	5	20	FIT	0	ANN
6	13	34	6	86	8	26	Pin	0	SPO
5	11	30	4	57	6	24	FIT	0	ANN
- -	3SM): orus: 0.0 torus: 0.0 Low Total P (mg/m^3) 9 7 9 2 9 2 9 2 9 2 1 N/A 8 7 6 5 6	ASSM): 7.0 mg/m ² Iorus: 0.0 18 Iorus: 0 18 Iorus: 12 13 Iorus: 0 13 Iorus: 0 13 Iorus: 10 13	ASSM): 7.0 mg/m ³ Est. Iorus: 0.0 mg/m ³ mg/m ³ Iorus: 0.0 mg/m ³ % 0 Iorus: 0.0 Most Likely Total P (mg/m ³) High Total P (mg/m ³) 9 18 49 7 12 22 9 13 22 9 13 22 9 19 50 2 5 13 N/A N/A N/A 8 16 43 7 13 28 6 13 34 5 10 23 6 13 34	SSM): 7.0 mg/m^3 Est. Gross Int. Load norus: 0.0 mg/m^3 0 0 kg norus: 0.0 mg/m^3 % Confidence Ran Low Most Likely High Predicted Total P (mg/m^3) (mg/m^3) % Confidence Ran 9 18 49 11 7 12 22 5 9 13 22 6 2 4 10 -3 9 19 50 12 2 5 13 -22 N/A N/A N/A N/A 8 16 43 9 7 13 28 6 6 13 34 6 5 10 23 3 6 13 34 6	SSM): 7.0 mg/m^3 Est. Gross Int. Loading: 0 kg Iorus: 0.0 mg/m^3 % Confidence Range: 70 Low Most Likely High Predicted % Dif. Total P (mg/m^3) % [mg/m^3] % Dif. 00 9 18 49 11 157 7 12 22 5 71 9 13 22 6 86 2 4 10 -3 -43 9 19 50 12 171 2 5 13 -2 -29 N/A N/A N/A N/A N/A 8 16 43 9 129 7 13 28 6 86 6 13 34 6 86 6 13 34 6 86	SSM): 7.0 mg/m ³ Est. Gross Int. Loading: 0 kg norus: 0.0 mg/m ³ % Confidence Range: 70 Low Most Likely High Predicted % Dif. Confidence Total P Total P (mg/m ³) % Confidence Range: 70 11 9 18 49 11 157 11 7 12 22 5 71 4 9 13 22 6 86 4 2 4 10 -3 -43 2 9 19 50 12 171 111 2 5 13 -2 -29 3 N/A N/A N/A N/A N/A N/A 8 16 43 9 129 8 7 13 28 6 86 6 6 13 34 6 86 7 <tr< td=""><td>SSM):7.0mg/m*3Est. Gross Int. Loading: 0kgnorus:0.0mg/m*3% Confidence Range:70Low Total P (mg/m*3)Most Likely Total P (mg/m*3)Predicted Observed (mg/m*3)% Dif. Confidence Lower BoundConfidence Upper Bound9184911157113871222571435913226864372410-3-4328919501217111392513-2-29310N/AN/AN/AN/AN/AN/A816439129835713286866266133468672751023343520613346868686</td><td>SSM):7.0 mg/m³Est. Gross Int. Loading: 0 kgoorus:0.0mg/m³370Low Most Likely Total P (mg/m³3)Predicted -Observed (mg/m³3)Confidence Lower BoundParameter Fit?0Most Likely Total P (mg/m³3)High Total P (mg/m³3)Predicted -Observed (mg/m³3)Confidence Lower BoundConfidence Upper BoundParameter Fit?91849111571138Tw91849111571138Tw91322686437FIT91322686437FIT91322686437FIT91322225711139FIT91322686437FIT913322686437FIT91332229310FIT013340121711139FIT01334686626FIT01334686626FIT1613346868620FIT613346868620FIT<</td><td>SSM): 7.0 mg/m³3 Est. Gross Int. Loading: 0 kg oorus: 0.0 mg/m³3 % Confidence Rarge: 70 Low Total P (mg/m^3) Most Likely Total P (mg/m^3) High Total P (mg/m^3) Predicted Observed (mg/m^3) % Dif. Confidence Lower Bound Parameter Upper Bound Back Calculation (kg/year) 9 18 49 11 157 11 38 Tw 0 9 13 22 5 71 4 35 FIT 1 1 9 13 22 6 86 4 37 FIT 1 1 9 13 22 6 86 4 37 FIT 1 1 9 13 22 6 86 4 37 FIT 1 1 9 19 50 12 171 111 39 FIT 0 10 14 10 3 4 10 14 35 FIT 0 1 10 13 3 4</td></tr<>	SSM):7.0mg/m*3Est. Gross Int. Loading: 0kgnorus:0.0mg/m*3% Confidence Range:70Low Total P (mg/m*3)Most Likely Total P (mg/m*3)Predicted Observed (mg/m*3)% Dif. Confidence Lower BoundConfidence Upper Bound9184911157113871222571435913226864372410-3-4328919501217111392513-2-29310N/AN/AN/AN/AN/AN/A816439129835713286866266133468672751023343520613346868686	SSM):7.0 mg/m³Est. Gross Int. Loading: 0 kgoorus:0.0mg/m³370Low Most Likely Total P (mg/m³3)Predicted -Observed (mg/m³3)Confidence Lower BoundParameter Fit?0Most Likely Total P (mg/m³3)High Total P (mg/m³3)Predicted -Observed (mg/m³3)Confidence Lower BoundConfidence Upper BoundParameter Fit?91849111571138Tw91849111571138Tw91322686437FIT91322686437FIT91322686437FIT91322225711139FIT91322686437FIT913322686437FIT91332229310FIT013340121711139FIT01334686626FIT01334686626FIT1613346868620FIT613346868620FIT<	SSM): 7.0 mg/m³3 Est. Gross Int. Loading: 0 kg oorus: 0.0 mg/m³3 % Confidence Rarge: 70 Low Total P (mg/m^3) Most Likely Total P (mg/m^3) High Total P (mg/m^3) Predicted Observed (mg/m^3) % Dif. Confidence Lower Bound Parameter Upper Bound Back Calculation (kg/year) 9 18 49 11 157 11 38 Tw 0 9 13 22 5 71 4 35 FIT 1 1 9 13 22 6 86 4 37 FIT 1 1 9 13 22 6 86 4 37 FIT 1 1 9 13 22 6 86 4 37 FIT 1 1 9 19 50 12 171 111 39 FIT 0 10 14 10 3 4 10 14 35 FIT 0 1 10 13 3 4

Recap

Source	Low kg/year	Most Likely kg/year
Surface watershed	11	19
Atmospheric (lake surface)	34	101
Additional groundwater	24	24
Septic systems	12	12
Total -kilograms/year	81	156
Total—pounds/year	177	344

Phosphorus Loading Data Setup

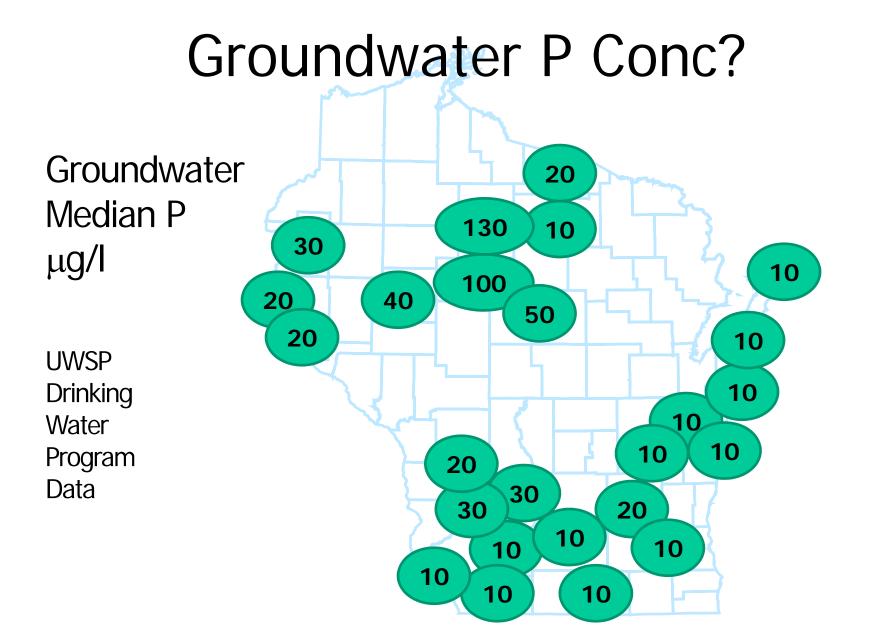
General Hydrologic & Morphometric Module Phosphorus Module (NPS) Phosphorus Module (PS) Total


Note that the septic P doesn't show up in the point source total but it is in the total loading

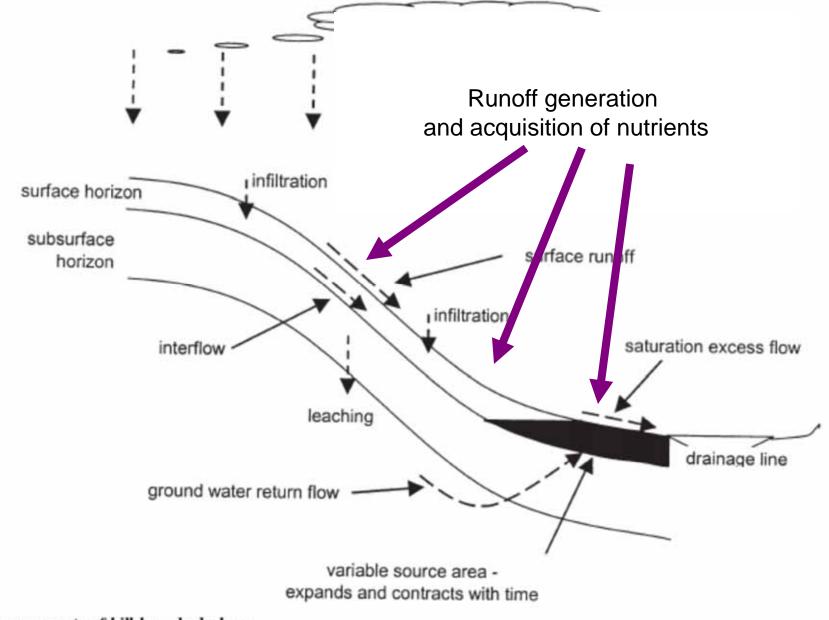
Description	Low	Most Likely	High	Loading %
Total Loading (Ib)	176.9	344.1	906.1	100.0
Total Loading (kg)	80.2	156.1	411.0	100.0
Areal Loading (Ib/ac-year)	0.21	0.41	1.09	
Areal Loading (mg/m^2-year)	23.80	46.30	121.92	
Total PS Loading (Ib)	52.9	52.9	52.9	15.4
Total PS Loading (kg)	24.0	24.0	24.0	15.4
Total NPS Loading (Ib)	23.2	41.8	83.5	76.9
Total NPS Loading (kg)	10.5	10.0	27.0	76 (

We do have some things we can discuss....

- This is a seepage lake
- Let's take a close look at atmospheric deposition
- Does groundwater actually enter the lake?
- What should the groundwater P concentration be?
- Take another look at steady-state in shallow lakes
- How about riparian runoff?
- Other?


Seepage Lake

Atmospheric Deposition


- "Lake Surface"
- WiLMS Default
 - "Most likely" estimate 0.3 kg/ha-yr (similar to Reckhow and Simpson p 81 in notes w/ range 0.15 to 0.5 in that paper)
- Other Values
 - 0.06 kg/ha-yr: N WI (Rose, W.J., 1993 Balsam Lake 1987-89: USGS WRI 91-4125)
 - 0.16 kg/ha-yr: (Field and Duerk, 1988 Delavan Lake USGS WRI 87-4168)
 - 0.17 kg/ha-yr (Ontario LCM modified in 2006, p 118 in notes)
 - Robertson (Whitefish Lake Study) used
 - Dry deposition
 - 0.12 kg/ha-yr for small lake, conifers
 - 0.07 for large lake, conifers
 - Wet deposition
 - 0.13 kg/ha-yr (0.016 mg/l assumed)

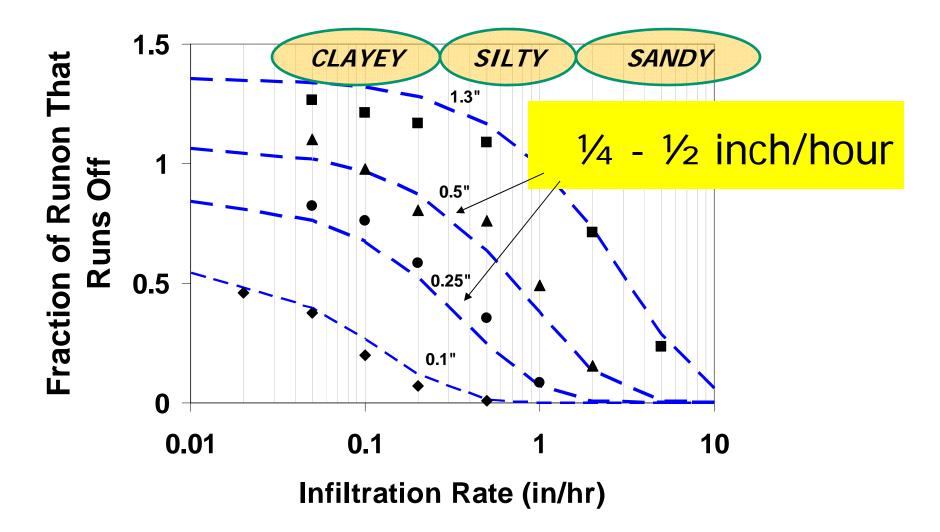
Used ~0.19 kg/ha-yr Or ~ 60 kg total for 833 acre lake

Do we have time to discuss RIPARIAN RUNOFF MODELS?

DOUGHERTY ET AL.: A REVIEW OF PHOSPHORUS TRANSFER IN SURFACE RUNOFF

Changes to phosphorus movement because of development?

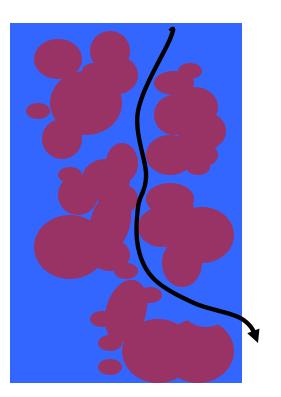
- Changes in vegetation
 - Interception
 - Evapo-transpiration
- Changes in infiltration
 - Compaction
- Changes in runoff generation
 - Sources of runoff
 - Pathways it takes
- Changes in nutrient availability
 - Fertilizer
 - Vegetation

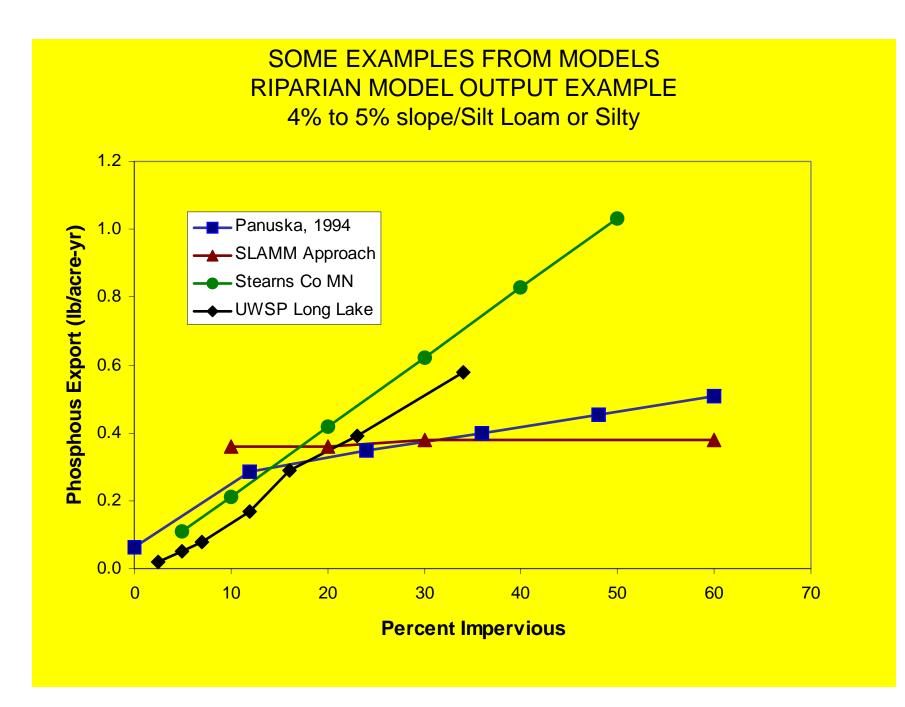

Observations (WDNR N WI Study)

- Concentrations of P in runoff may be similar in woods and lawn
 - Both reflect movement of water across high P surfaces
- Runoff volume differences likely the biggest contributor to differences in export
 - 10x, 50x, 100x differences in runoff volume between developed/undeveloped
- Export = (volume)*(concentration)

Ideas?

- Delivery? Connectivity?
- What is the quality of the runoff?
 - Runoff that originates from a roof and is conveyed across vegetation can have a very different concentration
- Controls Infiltration?


What controls the infiltration rate?


Runon Ratio 500 / 5(w) x 40 (L) The fraction of runon to the secondary buffer that would infiltrate for different storm sizes and infiltration rates (assumes a 500 ft2 impervious area draining to a five foot wide channel, forty feet long and one hour storm of depth shown). Dashed lines show the fitted equation based on soil infiltration rate and storm depth.

What about compaction?

Condition	Ponded Infiltration Rate (in/hr)
Vegetated	3.4
Open Soil	0.7
Traffic	0.1

Silt Ioam soil described by Vervoort, R.W., S.M. Dabney and M.J.M. Romkens. 2001. Tillage and Row Position Effects on Water and Solute Infiltration Characteristics, Soil Science Society of America Journal 65:1227-1234.

Big Finish...!

Let's take a look at one way to organize different Eutrophication Models

Quick Modeling Overview

General Categories of N	Iodels Examples
Single Event Rainfall / Runoff	TR-55, Rational Method
Continuous Hydrologic	HEC-1
Hydraulic	SWMM, HEC-RAS, HydroCAD
Steady-State Nutrient Export	WILMS, BATHTUB
Continuous Hydrologic w/ Nutrient	Urban – P8, WinSLAMM
& Sediment Export	Mixed Watershed – SWAT, HSPF
Steady-State Water Response	WILMS, BATHTUB
Continuous Water Response	AQUATOX, WASP, QUAL2E
NOTE– Increasingly these	models overlap in capability

Quick Modeling Overview

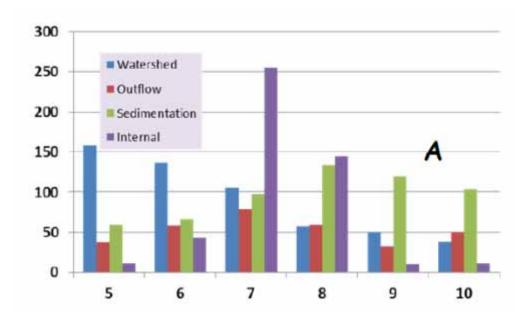
General Categories of N	Iodels Examples
Single Event Rainfall / Runoff	TR-55, Rational Method
Continuous Hydrologic	HEC-1
Hydraulic	SWMM, HEC-RAS, HydroCAD
Steady-State Nutrient Export	WILMS, BATHTUB
Continuous Hydrologic w/ Nutrient	Urban – P8, WinSLAMM
& Sediment Export	Mixed Watershed – SWAT, HSPF
Steady-State Water Response	WILMS, BATHTUB
Continuous Water Response	AQUATOX, WASP, QUAL2E
NOTE- Increasingly these	models overlap in capability

For more information

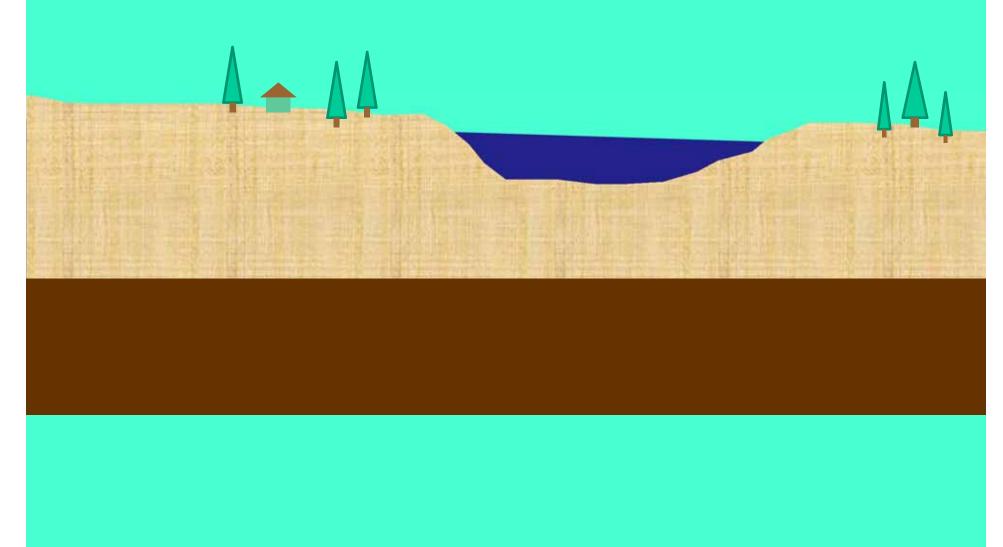
Notepack (pdf file)

Includes many of the original articles

Ouestions

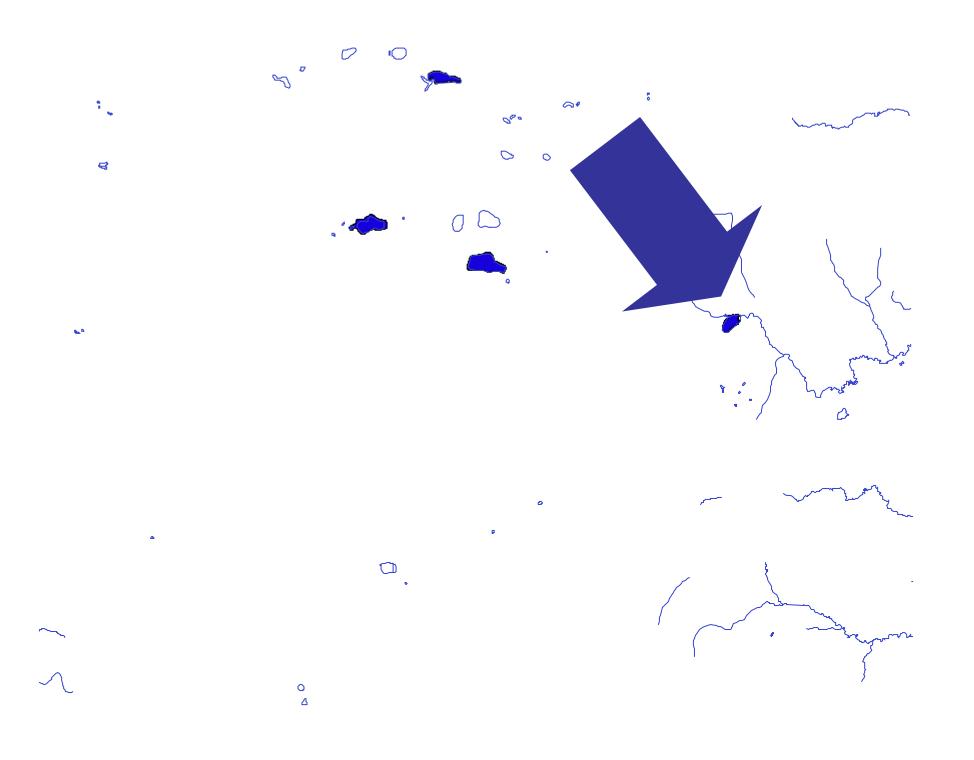

Paul McGinley pmcginle@uwsp.edu
(715) 346-4501
Nancy Turyk nturyk@uwsp.edu

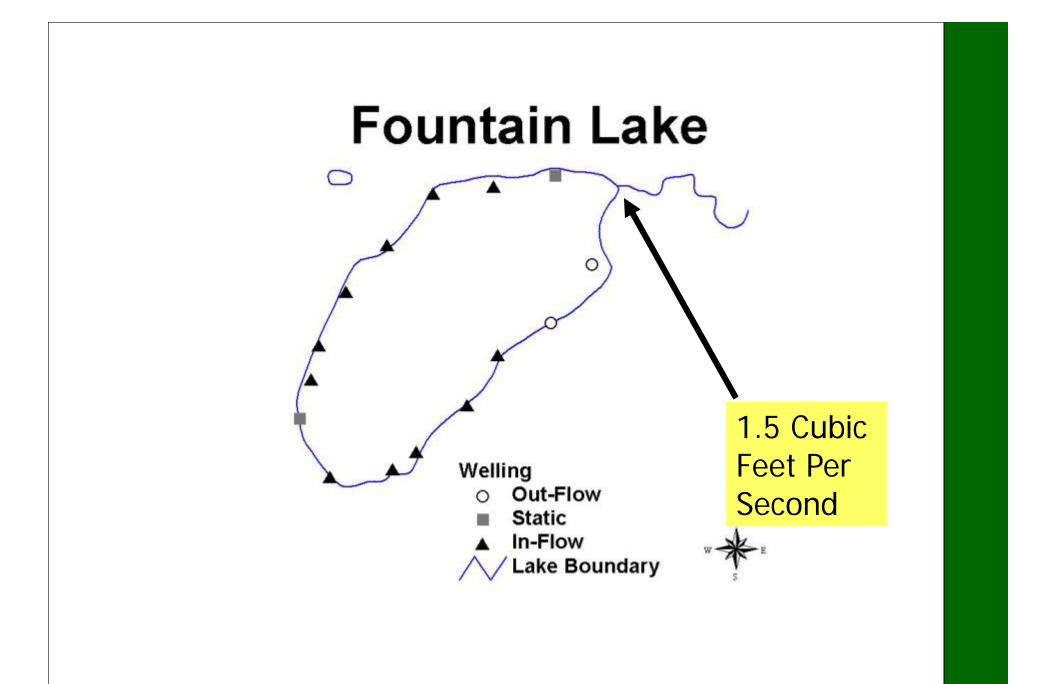
QUESTIONS & TIME FOR YOUR PROJECTS

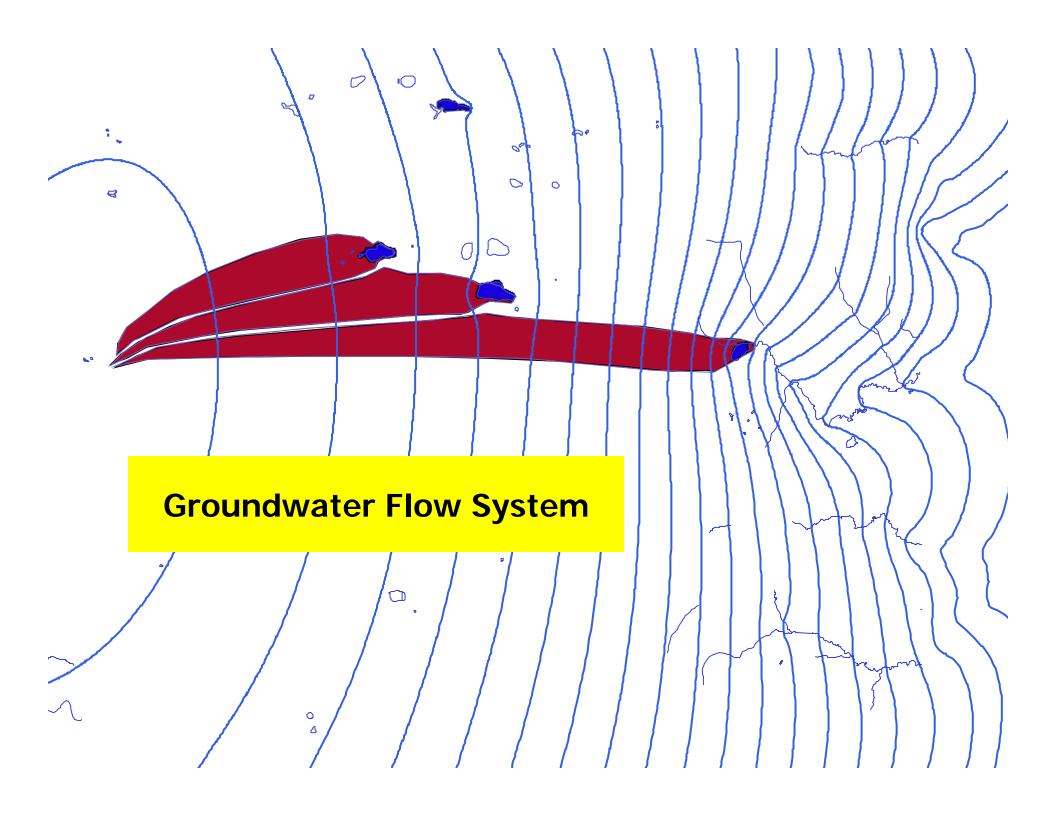


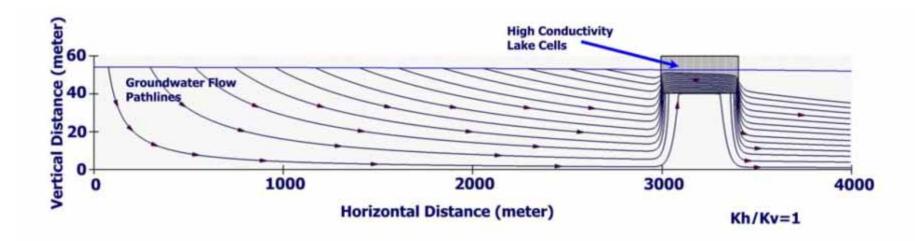
Usefulness of shorter time-step?

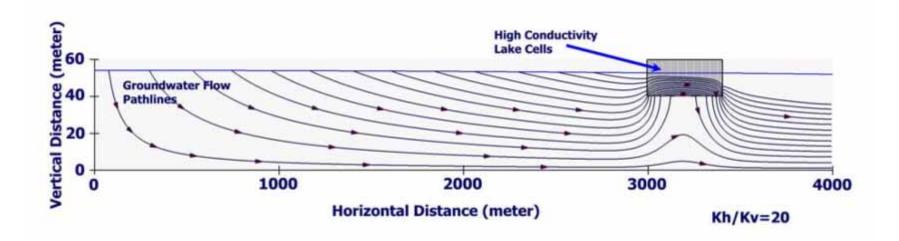
- Partition seasonal loads?
 - Here looking at the monthly P (in kilograms) for watershed loading (blue)

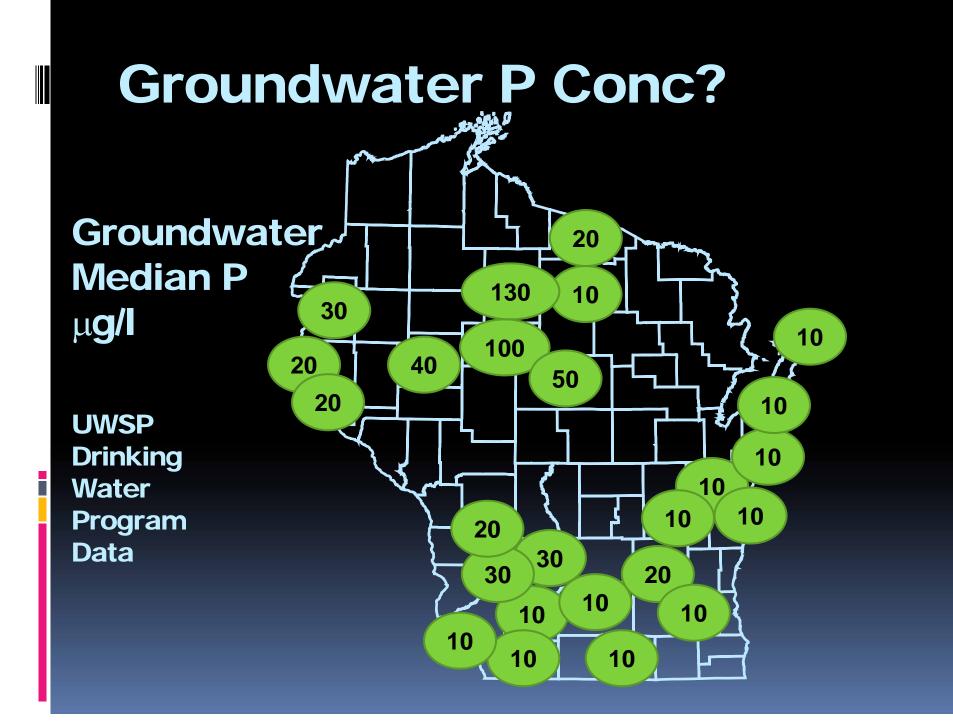



Lakes are connected to groundwater...



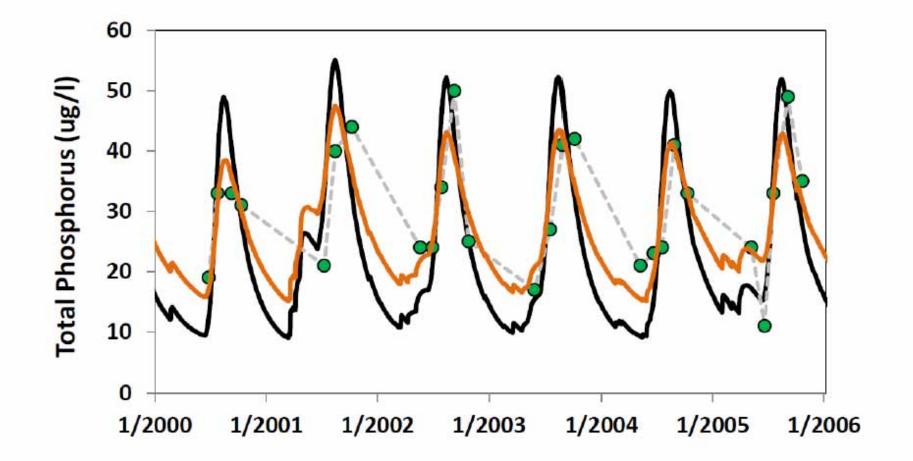






Does groundwater flow under lakes?

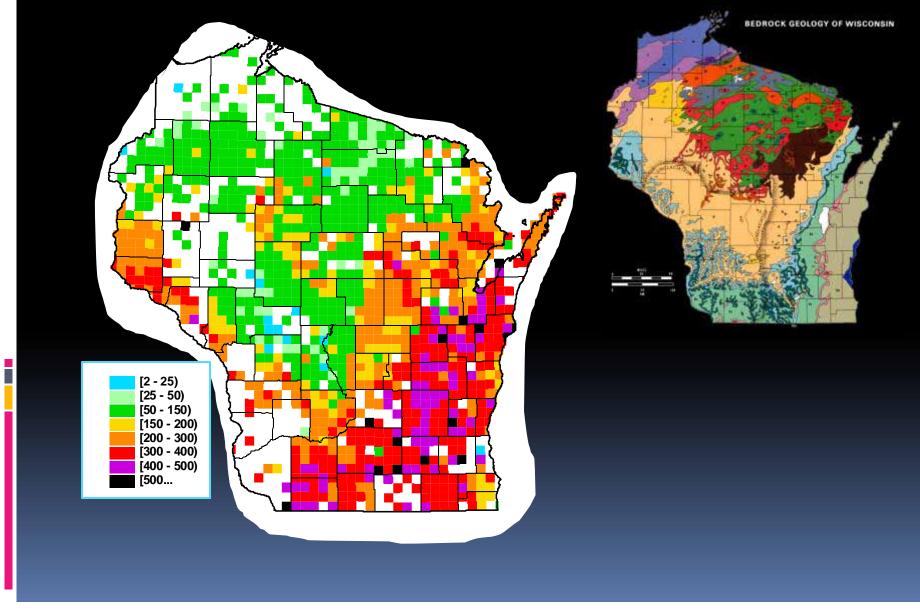
Does groundwater flow under lakes?

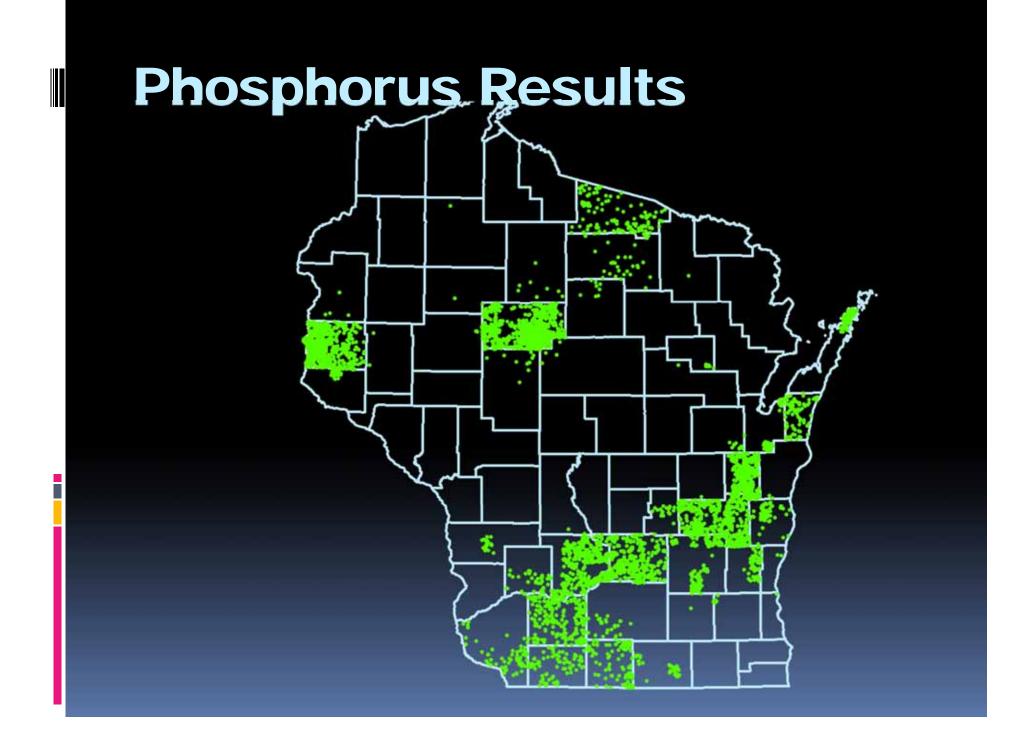


What about Steady-State?

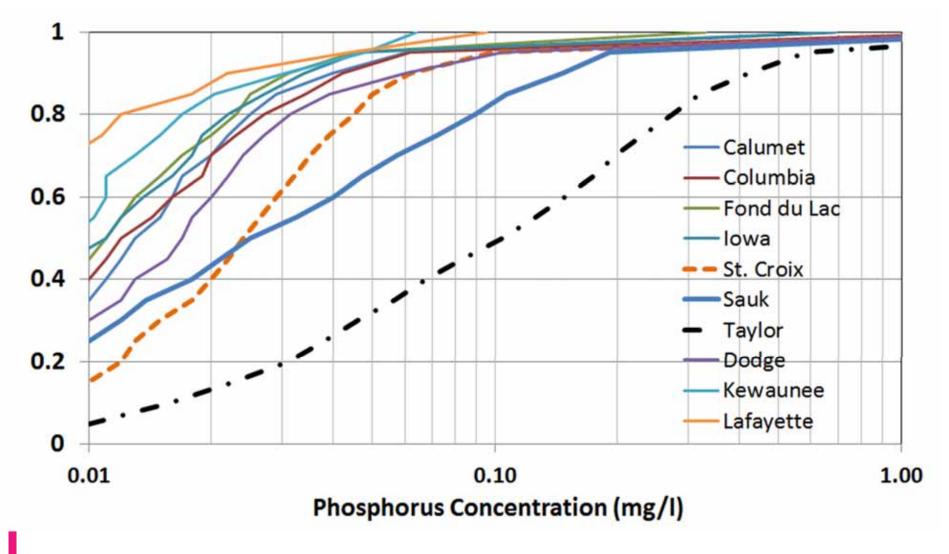
- Is that an important assumption?
- What about concentrations that vary during the growing season

Is this steady-state?

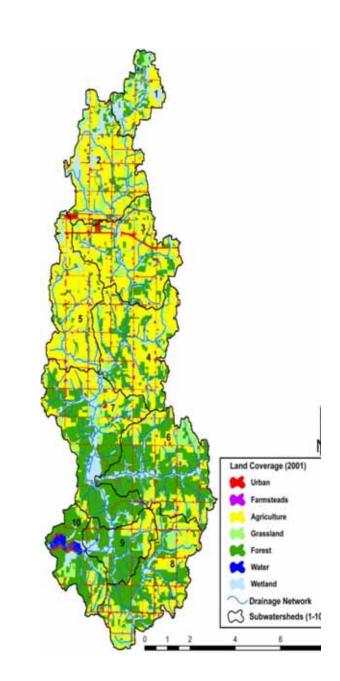

Extra Stuff


• Trophic Response Model Discussion?

Total Phosphorus: 🛄 mg/m ⁻ 3	3 Growing Season 0.0 mg/m^3 Secchi Disk Depth: 0.0 r
	wide WI Regional Other Regressions Chl a Nuisance Frequency
Carlson TSI Equations:	
TSI (Total Phosphorus) =	0
TSI (Chorophyll a) =	0
TSI (Secchi Disk Depth) =	0
-	


- The expanded trophic response menu in WiLMS evaluates water body trophic response using total phosphorus, chlorophyll a and Secchi depth transparency. The purpose of this feature is to allow stand-alone or model generated trophic response conditions to be evaluated. This part of WiLMS consists of four evaluation components driven by total phosphorus, chlorophyll a and Secchi depth transparency inputs. The four evaluation components are:
- 1. Carlson trophic state evaluation equations
- 2. Wisconsin statewide predictive equations
- *3. Wisconsin regions predictive equations*
- 4. Commonly used regressions including user defined.

Wisconsin Private Well Data Calcium & Magnesium (Hardness)


Phosphorus Distributions by County

UWSP Drinking Water Education Program

Extra Example

- 310 acre lake, Clark Co
- Mean depth 5 feet
- Average TP 110 ug/l (GSM/SPO)
- 61,900 acre watershed
 - Agriculture: 26,200
 - Grassland: 6,600
 - Forest: 19,700
 - Residential: 3,000
 - Water/Wetland: 6,400
- What is the areal water load?
- What is the water residence time?
- What is the predicted lake TP?

eneral Hydrolog	ic & Morphometri	c Module Phosphorus Module (N	PS) Phospho	rus Module (PS) Total Loading			
	English		Metric				
acre	61900.0	Tributary Drainage Area:	2.5E+008	m^2			
in.	9.60	Total Unit Runoff:	0.24	m			
acre-ft	49520.0	Annual Runoff Volume:	6.1E+007	m^3			
acre	310.0	Lake Surface Area <as>:</as>	1.3E+006	m^2			
acre-ft	1550.0	Lake Volume <v>:</v>	1.9E+006	m^3			
ft	5.0	Lake Mean Depth <z>:</z>	1.5	m			
in.	4.1	Precipitation - Evaporation:	0.1	m			
acre-ft/year	49625.9	Hydraulic Loading:	6.1E+007	m^3/year			
ft/year	160.1	Areal Water Load <qs>:</qs>	48.8	m/year			
Lake Flushing Rate : 32.02 1/year Water Residence Time: 0.03 year							

Reset Defaults	6	1900.0 Tota	al Drainage A	rea Assigned	A Land Cover	r					
		Loa	ding (kg/ha	year)	-	Loa	ding (kg-year)			
Land Use	Area (acre)	Low	Most Likely	High	Loading %	Low	Most Likely	High			
Row Crop AG	26200.0	0.50	1.00	3.00	84.6	5302	10603	31809			
Mixed AG	0.0	0.30	0.80	1.40	0.0	0	0	0			
Pasture/Grass	6600.0	0.10	0.30	0.50	6.4	267	801	1336			
HD Urban (1/8 Ac)	0.0	1.00	1.50	2.00	0.0	0	0	0			
MD Urban (1/4 Ac)	0.0	0.30	0.50	0.80	0.0	0	0	0			
Rural Res (>1 Ac)	3000.0	0.05	0.10	0.25	1.0	61	121	304			
Wetlands	6400.0	0.10	0.10	0.10	2.1	259	259	259			
Forest	19700.0	0.05	0.09	0.18	5.7	399	718	1435			
User Defined 1	0.0	0.00	0.00	0.00	0.0	0	0	0			
User Defined 2	0.0	0.00	0.00	0.00	0.0	0	0	0			
User Defined 3	0.0	0.00	0.00	0.00	0.0	0	0	0			
User Defined 4	0.0	0.00	0.00	0.00	0.0	0	0	0			
User Defined 5	0.0	0.00	0.00	0.00	0.0	0	0	0			
User Defined 6	0.0	0.00	0.00	0.00	0.0	0	0	0			
aka Surfana	310.0	0.10	0.20	1.00	0.3	12	28	125			
% NPS Change:	0%		% NPS 0%								

Phosphorus (kg/year)								
Point Sources	Water Load (m^3/year)	Low	Most Likely	High	Loading %	-		
Jser Defined 1	0.0	0.0	0.0	0.0	0.0			
Jser Defined 2	0.0	0.0	0.0	0.0	0.0			
Jser Defined 3	0.0	0.0	0.0	0.0	0.0			
Jser Defined 4	0.0	0.0	0.0	0.0	0.0			
Jser Defined 5	0.0	0.0	0.0	0.0	0.0			
Jser Defined 6	0.0	0.0	0.0	0.0	0.0			
Description		Low	Most Likely	High	Loading %	1		
Septic Tank Output (kg/capita-year)		0.30	0.50	0.80				
¢ capita-years	0.0							
% Phosphorus Retained by Soil		98.0	90.0	80.0				
Septic Tank Loading (kg/year)		0.00	0.00	0.00	0.0			
% PS 0%								

neral Hydrologic & Morphometric Module Phosphorus Module (NPS) Phosphorus Module (PS)								
Description	Low	Most Likely	High	Loading %				
Total Loading (Ib)	13888.0	27645.8	77751.8	100.0				
Total Loading (kg)	6299.6	12540.0	35268.0	100.0				
Areal Loading (Ib/ac-year)	44.80	89.18	250.81					
Areal Loading (mg/m^2-year)	5021.47	9995.84	28112.61					
Total PS Loading (Ib)	0.0	0.0	0.0	0.0				
Total PS Loading (kg)	0.0	0.0	0.0	0.0				
Total NPS Loading (Ib)	13860.4	27562.8	77475.2	100.0				
Total NPS Loading (kg)	6287.0	12502.4	35142.5	100.0				
% PS 0%	-60 -50 -40 -30	-20 -10 0	10 20	, , , , , , , 30 40 50	60 70 80 90			
Change: -100 -90 -80 -70 -	% NPS 0%							

Phosphorus Predictions & Uncertainty A	nalysis							-		
Observed spring overturn total phosphorus (SPO): 110.0 mg/m^3 Numberg Model Input - Observed growing season mean phosphorus (GSM): 110.0 mg/m^3 Image: Constant Con										
Lake Phosphorus Model	Low Total P (mg/m^3)	Most Likely Total P (mg/m^3)	High Total P (mg/m^3)	Predicted -Observed (mg/m^3)	% Dif.	Confidence Lower Bound	Confidence Upper Bound	Parameter Fit?	Back Calculation (kg/year)	Model Type
Walker, 1987 Reservoir	66	132	371	22	20	78	285	Tw	0	GSM
Canfield-Bachmann, 1981 Natural Lake	85	160	396	50	45	50	461	L	1	GSM
Canfield-Bachmann, 1981 Artificial Lake	72	126	267	16	15	39	363	FIT	1	GSM
Rechow, 1979 General	72	142	401	32	29	81	310	P	0	GSM
Rechow, 1977 Anoxic	91	180	507	70	64	108	388	FIT	0	GSM
Rechow, 1977 water load<50m/year	53	106	298	-4	-4	61	230	P	0	GSM
Rechow, 1977 water load>50m/year	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Walker, 1977 General	88	175	492	65	59	88	394	FIT	0	SPO
Vollenweider, 1982 Combined OECD	61	107	249	_	-3	53	220	FIT	0	ANN
Dillon-Rigler-Kirchner	66	131	368	21	19	78	282	PL	0	SPO
Vollenweider, 1982 Shallow Lake/Res.	52	96	238	-14	-13	47	202	FIT	0	ANN
Larsen-Mercier, 1976	87	174	490	64	58	107	373	P Pin p	0	SPO
Nurnberg, 1984 Oxic	80	159	447	49	45	84	353	PL	0	ANN

Finished

🕅 Write Results 🛛 🔝 Display Parameter Values

? <u>H</u>elp

Internal Loading

- What is it?
- Importance

Internal Loading

- Estimating
 - Internal Load Estimator
 - Iterate using Nurnberg loading
- Prediction Options
 - Using lake response model that includes internal load (net reduced retention)
 - Using Nurnberg Oxic + Internal Model

Discussion on LEAP

(Lake Eutrophication Analysis Procedure)

- Tools ... Ecoregion Setup
- Pick state
- Pick ecoregion
- Enter lake & watershed information
- Enter water quality information

Lake Eutrophication Analysis Procedure										
File Tools Help										
😍 Show Calibration Values 🔳 Calculate 🚀 Clear										
Lake and Watershed Constants										
Ecoregion North Central Hardw	vood Forests 👻	Total Phosphoru	s 40	ug/L	-					
Lake Name A		Chlorophyll a	20	ug/L	-					
Watershed Area 1000	Acres 🔻	Secchi Disl	(1.5	m	-					
Surface Area 100 Mean Depth 5	Acres 🔻		1	,	_					
Output Chl-a Predictions TSI										
Predicted										
Average TSI 57										
TPhos TSI 57		· · · · ·								
Chlor a TSI 60		• • •		,						
Secchi TSI 54		•								
0 10 20 ——— Ecoregion Range		50 60 Trophic State Index	70	80 90	100					

LEAP

- Lake Eutrophication Analysis Procedure
- Reference- Wilson and Walker, 1989
 - MNLEAP
 - page 154

LEAP

- Inflow TP / Mean Depth / Residence Time
 - TP
 - Chl a
 - Secchi

Applications (S. Heiskary)

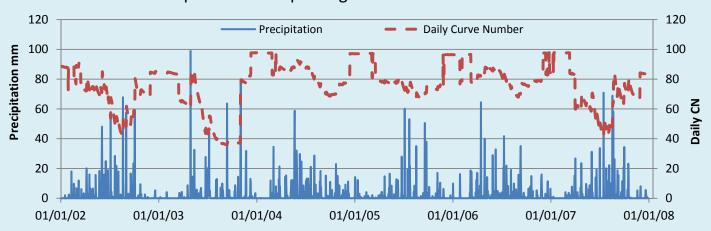
- How is a lake doing for its ecoregion and morphometry
- Quick estimates of water and nutrient budgets
- Flag lakes for additional study
- Compare TP / Chl-a / Secchi observed versus the reference lakes
- Estimate background P, Chl-a, Secchi
- Set goals? Along with other info

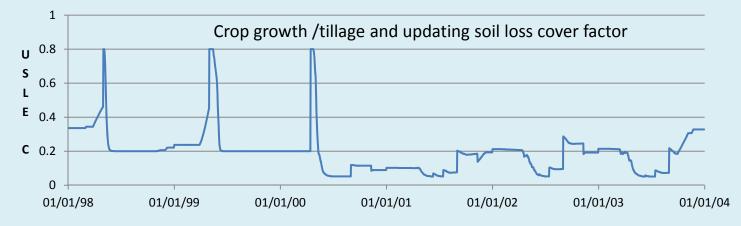
LEAP

- Average precip, evap, runoff
- Water Outflow = (runoff*wshed area) (lake area*(precip-evap))
- P Loading = (lake area*atm dep) + (wshed area*runoff*regional stream P)
- Canfield & Bachmann (1981) P Model
- Some type of TP/Chl a/Secchi Model
 - State-wide set (MN)
 - WI?

According to SH

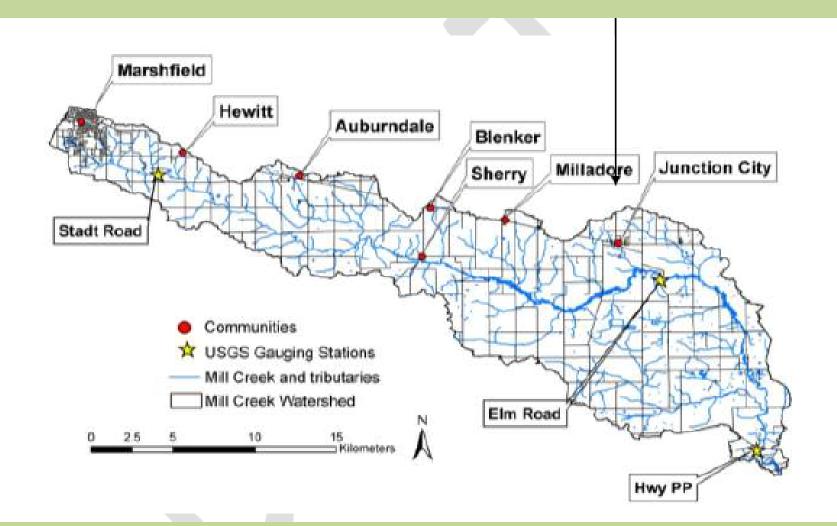
- Maybe best for dimictic lakes in less impacted regions
- Probably most difficult to use for polymictic lakes with significant internal load, turbid lakes, seepage lakes

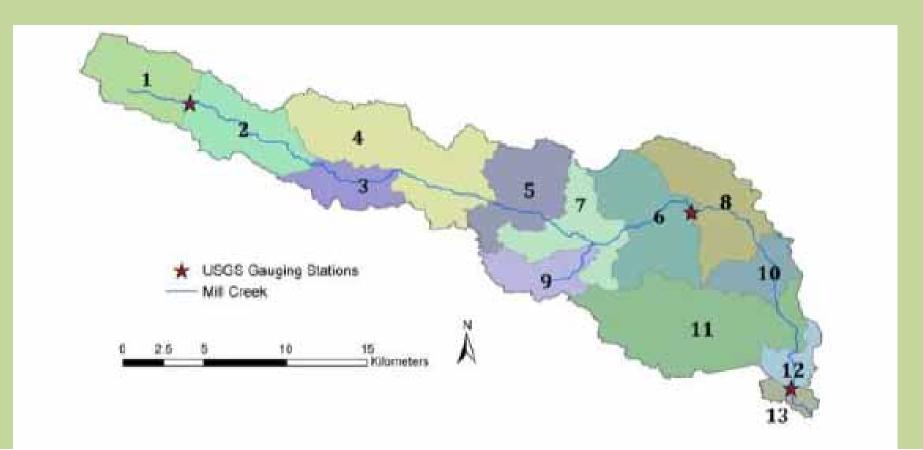

Example Problem


- 112 ha lake (275 acre)
- 750 ha watershed (1800 acre)
 - 50% Forested
 - 50% Row Crop Agriculture
- Overturn P of 30 ug/l
- Growing Season Mean 27 ug/l

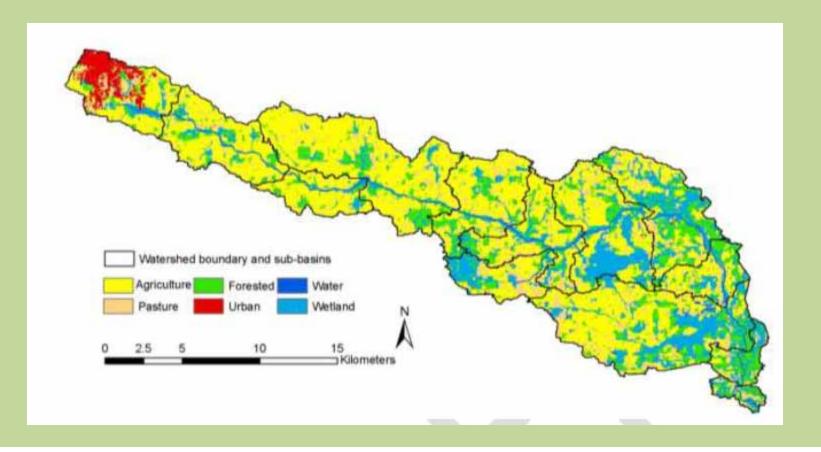
A little discussion on other watershed models...SWAT

Briefly... Soil and Water Assessment Tool (brc.tamus.edu/swat)


Daily Time Step HRU – Subbasin - Reach Hydrology – NRCS CN Sediment – Modified USLE Phosphorus – Link Runoff and Sediment to P "pools" SWAT2000 (w/ revisions) SWAT2005 Primarily use in DOS Excel VB for pre & postprocessing

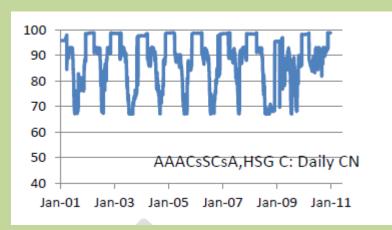


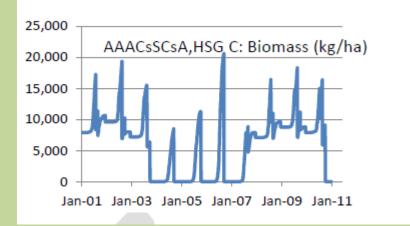
Precipitation and updating curve number

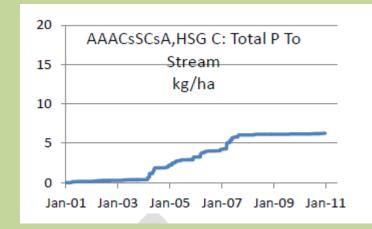

Mill Creek

Divide into "subbasins"

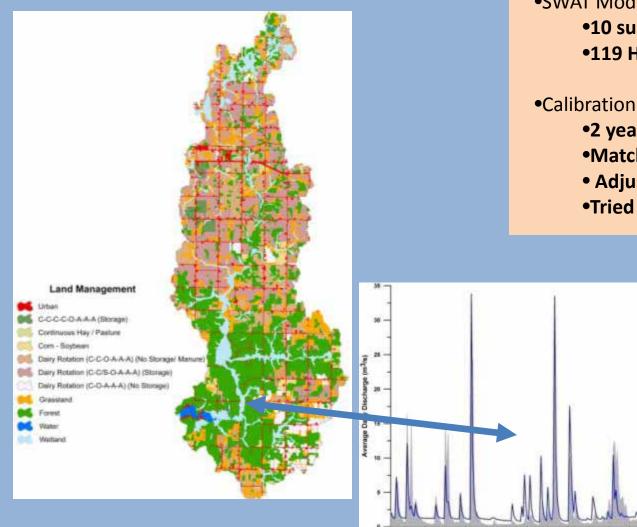
Divide into "hydrologic response units" (land mgt & soils)


Figure out what's going on in the watershed... create model inputs


		Rotation	A		Rotation	В		Rotation	с		Rotation	D
Year	Crop	Operation ¹	Date	Crop	Operation ¹	Date	Crop	Operation ¹	Date	Crop	Operation ¹	Date
1	Cs	MS	Jan-May	Α	Harvest	6/8	С	Spread	5/1	Α	Till-Chisel	4/20
		Till-MB	5/3		Harvest	7/1		Till-Chisel	5/3		Spread	5/1
		Plant	5/7		Harvest	8/1		Plant	5/7		Plant	5/15
		Harvest/kill	9/15		Harvest	9/1		Cultivate	6/10		Harvest	7/1
		MS	Oct - Dec					Harvest/kill	10/15		Harvest	8/1
								Spread	10/18		Harvest	9/1
2	С	Spread	5/1	Α	Harvest	6/8	С	MS	Jan-May	Α	Harvest	6/8
		Till-Chisel	5/3		Harvest	7/10		Till-MB	5/3		Harvest	7/10
		Plant	5/7		Harvest	8/20		Plant	5/7		Harvest	8/20
		Cultivate	6/10		Harvest	10/1		Cultivate	6/10			
		Harvest/kill	9/15					Harvest/kill	10/15			
		Spread	10/1					MS	Oct - Dec			
3	Cs	Spread	5/1	Α	Harvest	6/8	S	Spread	5/1	Α	MS	Jan- May
		Till-Chisel	5/3		Harvest	7/10		Till -Disk	5/2		Harvest	6/8
		Plant	5/7		Harvest	8/20		Plant	5/20		Harvest	7/10
		Cultivate	6/10		Harvest/kill	10/1		Harvest/kill	10/15		Spread	7/11
		Harvest/kill	10/15					Spread	10/18		Harvest	8/20
		Spread	10/18					Till-Chisel	10/20		Till-Chisel	10/3
											MS	Oct-Dec


Table 3 Four rotation schedules used in the Mill Creek simulation

Then add water- combine daily rainfall and land management


• simulate – crop growth, runoff etc...

Example- Mead Lake

Watershed

•250 km²

- •SWAT Model
 - •10 subbasins
 - •119 HRUs

- •2 years flow/ TSS / TP
- •Matched total w/ CN

- 20100

CONTRACTOR OF

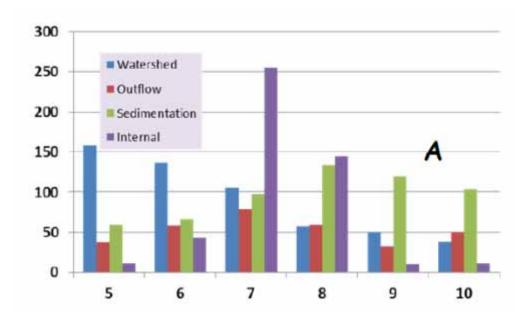
- 194

2017100 - 50101 - 50101

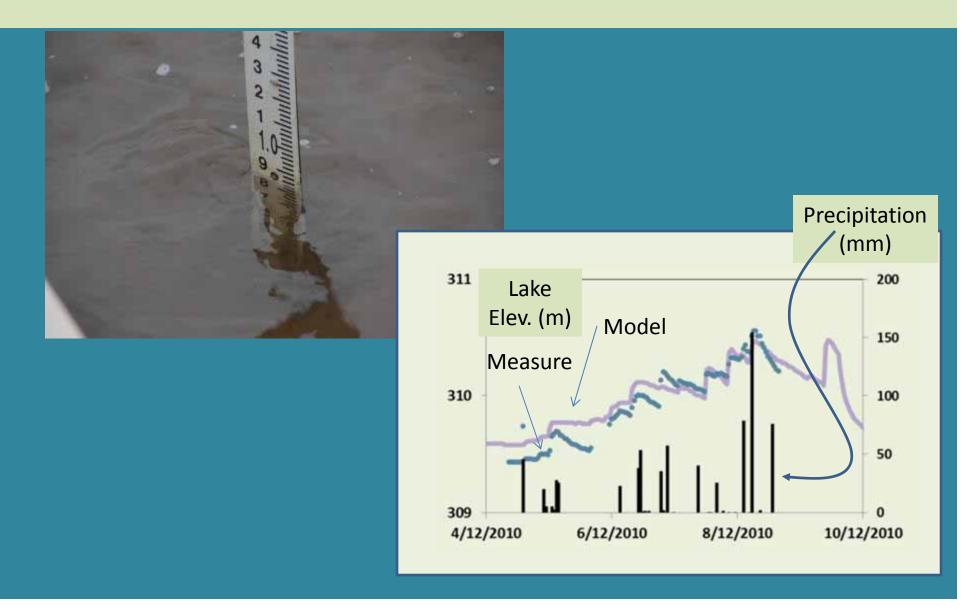
- Adjusting USLEP, Filterw
- •Tried to fit P fractions and P Content

Measured Discharge

- 00719


- 1982

- 19419


SWAT Discharge

Usefulness of shorter time-step?

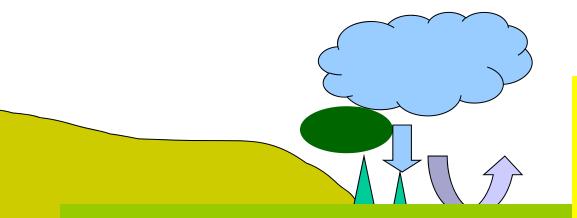
- Partition seasonal loads?
 - Here looking at the monthly P (in kilograms) for watershed loading (blue)

Daily Tracking– Lake Volume/Depth

Why more detail on the model?

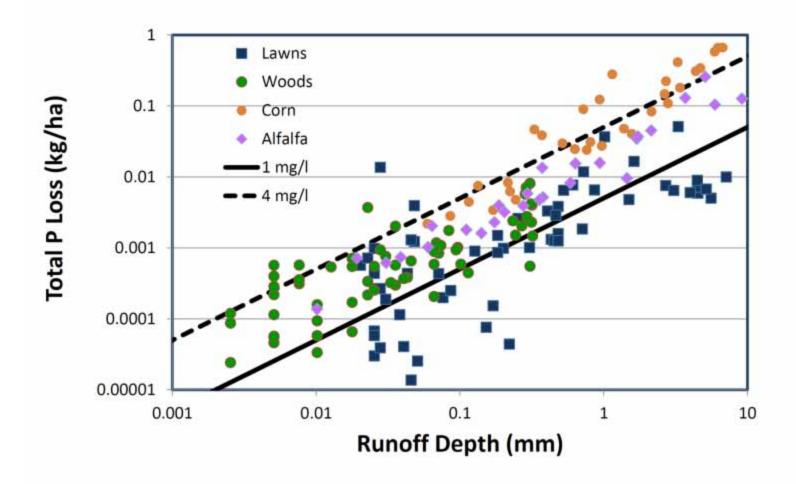
• Comparing effect of land management on P export.

Table 3. Simulated Phosphorus Export Under Different Management Scenarios¹


Scenario	Total Phosphorus kg/May-Sept / (lb/May-Sept) / Reduction %
Baseline	1703 / (3743)
Reducing Soil P (25 ppm)	1470 / (3231) / 14%
Reducing Soil Erosion (50% reduction in USLE P)	1465 / (3220) / 14%

Challenges

- Requires a lot more information
- May be more than one way to match the data



SURFACE RUNOFF

Study	Surface Runoff Total P
	(mg/l)
Graczyk et al., 2003	0.3-1.1
Garn, 2002	1.8-4.0
Stuntebeck, 2002	1.1-1.3
Bannerman, 1996	0.3
Waschbusch et al,	1.0-1.5

Combine some runoff measurements

- Graczyk, Greb- Woods / Lawn
- Pioneer Farm Corn/Alfalfa

