Plogram in Wisconsin

eb and Daniela Gurlin Rement of Natural Resources

Statewide Aquatic Remote Sensing

2016 Wisconsin Lakes Partnership Convention

Wednesday - Friday March 30 - April 1, 2016

Held in conjunction with the 7th Store-based Monitoring Conference and the Water Action Volumbars Annual Symposium April 1-2

Holiday Inn and Convention Center Stevens Point Terra and Aqua MODIS data. Space Science and Engineering Center (SSEC) at the University of Wisconsin-Madison

Remote Sensing Activities at the Wisconsin DNR

- Systematic processing of Landsat 7
 ETM+ and Landsat 8 OLI imagery for water clarity
- Studies of the major drivers of lake water clarity, their interactions, and the potential impacts of land use and climate on water clarity
- Increase in earth observation monitoring capabilities through the optical and biogeochemical characterization of lakes in support of algorithm calibration, refinement, and validation

LC80240282013174LGN00

Remote Sensing Activities at the Wisconsin DNR

EO sensors suitable for water quality assessment with public access data policy

	Pixel Size (m)	Bands (400-900 nm)	Revisit cycle	CHL	CYP	TSM	CDOM	SD	К,
Low res.									
MODIS	1000	9	Daily	•		•	•	•	•
MODIS	500	2	Daily	•	•				
MOD15	250	2	Daily	•			•		
MERIS & OCM2	300	15	2-3 days	•	•	•	•	•	•
VIIRS	750	7	2x/day						
Med res.									
Landsat	30	4	16						
Fature									
Sentinel-3	300	21	Daily	•		•	•	•	
LDCM	30	5	16						
Sentinci-2	10-60	10	3-5 days	•		•		•	•
HySpIRI	60	60	19 days			•	•	•	•

Highly suited Suited Potential Not suited

CHL=Chlorophyll; CYP=Cyanophycocyanin; TSM=Total Suspended Matter; CDOM=Coloured Dissolved Organic Matter; SD= Secchi Disk Transparency; Kd=Vertical Attenuation of Light

Table from Dekker, A.G. & Hestir, E. L. (2012) *Evaluating the Feasibility of Systematic Inland Water Quality Monitoring with Satellite Remote Sensing*. CSIRO: Water for a Healthy Country National Research Flagship Landsat 8 OLI and TIRS (02/11/2013)

OLI

- Eight multispectral bands and one panchromatic band
- Pixel size 30 m for multispectral bands and 15 m for panchromatic band
- Scene size 170 x 180 km
- Repeat cycle 16 days

NASA photo

TIRS

- Two thermal bands
- Pixel size 100 m

Space.com image

Water Clarity Estimates from Landsat imagery

Systematic processing of satellite imagery for water clarity

2014 water clarity estimation

- 86 satellite images
- 32 data processing steps
- 12 image mosaics for algorithm development
- 760 ground truth measurements for algorithm development
- 10703 water clarity estimates
- 4294 Water Bodies

Besering Sources: Ear, IEEE, DeLorme, Tomfory, Internet, Fr. Corp., CEICO, USCS, 140, NPS, MACAN, Goollans, KN, Nacaster ML, Ordnance Sarvey, Earl Japan, MER, Earl Online (Hang Kang), solutions, Macanyindia, a DeerStreetHap contributory and the GS User Community

Number of Lakes by Secchi Depth (1 ft. Intervals) Year 2014

Frequency of Occurrence of Secchi Depth

Frequency of Occurrence of Secchi Depth w/ fitted Normal Distribution

Distribution of Lakes across the state (from 2014 data set)

Secchi Depth South to North

Relationship of Secchi to Lake Depth

Relationship of Secchi to Lake Depth

Lakes and Aquatic Invasive Species (AIS) Mapping Tool

http://dnr.wi.gov/lakes/viewer/

Optical and Biogeochemical Characterization of Lakes

Field data collection

- Field data collection in summer and fall 2014-15 for algorithm development
- 24 lakes in Wisconsin
- Color samples collected by CBM volunteers Field and laboratory measurements
- Water temperature, dissolved oxygen, conductivity, and Secchi depth
- Reflectance
- Water color and turbidity
- TSS, ISS, and OSS
- Absorption and backscattering coefficients

Collection of reflectance spectra with CDAP-2

Remote sensing of water quality

Guerschman, et al., 2015

Remote sensing of water quality

Guerschman, et al., 2015

2015 Field Data

Water Color

Current and future sensors

New tools in the toolbox

Thank you

Sentinel 3 - ESA Image 2015

