Lake Monitoring in Wisconsin using Satellite Remote Sensing

D. Gurlin and S. Greb
Wisconsin Department of Natural Resources
2015 Wisconsin Lakes Partnership Convention
April 23-25, 2105
Holiday Inn Convention Center, Stevens Point

LDCM artist’s rendering: NASA/Goddard
Space Flight Center Conceptual Image Lab
Remote sensing applications for environmental monitoring

Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters

Hans-Erik Andersen 1, Stephen E. Brawack 1,2, Robert J. McGaughey 1, Marcus Y.N. Oliwiyi 1, Michael Keller 1,2
1 Department of Marine, Atmospheric, and Environmental Sciences, University of Washington, Seattle, WA 98195, USA
2 Plankton Ecology Group, Marine Ecosystem Research Institute, University of Victoria, Victoria, BC, Canada

Monitoring selective logging in western Amazonia with repeat lidar flights

Hans-Erik Andersen 1, Stephen E. Brawack 1,2, Robert J. McGaughey 1, Marcus Y.N. Oliwiyi 1, Michael Keller 1,2
1 Department of Marine, Atmospheric, and Environmental Sciences, University of Washington, Seattle, WA 98195, USA
2 Plankton Ecology Group, Marine Ecosystem Research Institute, University of Victoria, Victoria, BC, Canada

Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia

Michael Schmutz 1,2,3, Richard Lucas 1, Peter Bunting 4, Jan Verhoolst 4, John Armstrong 1,2
1 Remote Sensing Centre, Faculty of Information Technology, Innovation and Emerging Technology, Bond University, Gold Coast, Queensland 4222, Australia
2 School of Biological, Earth and Environmental Sciences (BES/EE), College of Science, University of New South Wales, Sydney, NSW 2052, Australia
3 Laboratory of Geo-Information Science and Remote Sensing, Wageningen University, Wageningen, Netherlands

Estimating lake carbon fractions from remote sensing data

Jiri Kutser 1,2,3, Charles Verpoorter 1,2, Birgitt Paavel 2, Lars J. Tranvik 2
1 Estonian Marine Institute, University of Tartu, Mustvee 14, Tallinn 11620, Estonia
2 Department of Biological Sciences, College of Natural and Health Sciences, University of Kentucky, Lexington, KY 40506, USA
3 NIOZ-LEO, Den Burg 115, 1441 MS, Texel, The Netherlands

David A. Palandro 1,2,3,4, Serge Andréfouët 1,2,3,4, Chunmin Hu 1,2,3,4, Pamela Hunt 1,2,3,4, Frank E. Miller-Krag 1,2,3,4, Philipp Dusman 1,2,3,4, Michael K. Callahan 1,2,3,4, Christopher Krinner 1,2,3,4, Giri R. Boers 1,2,3,4
1 Florida Keys National Marine Sanctuary, National Oceanic and Atmospheric Administration, Key West, Florida 33040, USA
2 Florida State University, Department of Geography, Tallahassee, Florida 32306, USA
3 Florida International University, Institute of Marine Sciences, North Bay Village, Florida 33141, USA
4 National Oceanic and Atmospheric Administration, Silver Spring, Maryland 20910, USA

Tree cover and forest cover dynamics in the Mekong Basin from 2001 to 2011

Patrick Leiminger 1,2,3, Michel J. Wolter 4, Katscha Opper 5, Claudia Kuemmer 6
1 Institute for Geoinformatics (FGG), University of Münster, Münster, Germany
2 Center for Remote Sensing of Land-Use and Environment, Münster, Germany
3 Center for Remote Sensing of Land-Use and Environment, Münster, Germany
4 German Aerospace Center (DLR), German Remote Sensing Data Center, Wessling, Germany
5 University of Munich, Germany
6 University of Munich, Germany

Ice sheet change detection by satellite image differencing

Robert A. Bondshuller 1,2,3, Ted A. Scambos 4,5, Hyungsoo Choi 6, Terry M. Harris 7
1 Dynamics of Ice Cap and Ice Sheet Processes, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
2 National Snow and Ice Data Center, Boulder, CO 80303, USA
3 University of Colorado, Boulder, CO 80303, USA
4 National Snow and Ice Data Center, Boulder, CO 80303, USA
5 National Snow and Ice Data Center, Boulder, CO 80303, USA
6 National Snow and Ice Data Center, Boulder, CO 80303, USA
7 National Snow and Ice Data Center, Boulder, CO 80303, USA
Advantages and disadvantages of remote sensing for lake monitoring

Advantages

- Water quality data with **a high spatial and temporal resolution** for thousands of lakes at a time
- Evaluation of **environmental problems and potential health risks**
- Historical data for studies of trends in water quality
- Real time data for integration into early warning systems to protect the public from harmful algal blooms

Disadvantages

- Optically complex conditions found in lakes
- Potential interference from the lake bottom in shallow lakes
- Dynamic changes in water quality
- Limited number of water quality parameters
- Calibration and validation of models typically requires the collection of ground truth data
Remote sensing activities at the Wisconsin DNR

- Systematic processing of Landsat 7 ETM+ and Landsat 8 OLI data for the retrieval of water clarity

- Studies of the major drivers of lake water clarity, their interactions, and the potential impacts of land use and climate on water clarity

- Increase in Earth observation monitoring capabilities through the optical and biogeochemical characterization of lakes in support of algorithm calibration, refinement, and validation

Landsat 8 OLI image courtesy of the U.S. Geological Survey
Remote sensing activities at the Wisconsin DNR

Landsat 8 OLI and TIRS

(02/11/2013)

OLI
- Eight multispectral bands and one panchromatic band
- Pixel size 30 m for multispectral bands and 15 m for panchromatic band

TIRS
- Two thermal bands
- Pixel size 100 m
- Scene size 170 x 180 km
- Repeat cycle 16 days

EO sensors suitable for water quality assessment with public access data policy

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Pixel Size (m)</th>
<th>Bands (400-600 nm)</th>
<th>Revisit Cycle</th>
<th>CHL</th>
<th>CYP</th>
<th>TSM</th>
<th>CDOM</th>
<th>SD</th>
<th>Kd</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW res. MODIS</td>
<td>1000</td>
<td>9</td>
<td>Daily</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODIS</td>
<td>500</td>
<td>2</td>
<td>Daily</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MODIS</td>
<td>250</td>
<td>2</td>
<td>Daily</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MERIS & OCM2</td>
<td>300</td>
<td>15</td>
<td>2-3 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIIRS</td>
<td>750</td>
<td>7</td>
<td>2x/day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med res. Landsat</td>
<td>30</td>
<td>4</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentinel-3</td>
<td>300</td>
<td>21</td>
<td>Daily</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDCM</td>
<td>30</td>
<td>5</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentinel-2</td>
<td>10-60</td>
<td>10</td>
<td>3-5 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HySpIRI</td>
<td>60</td>
<td>60</td>
<td>19 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Highly suited
- Suited
- Potential
- Not suited

CHL=Chlorophyll; CYP=Cyanophycocyanin; TSM=Total Suspended Matter; CDOM=Coloured Dissolved Organic Matter; SD=Secchi Disk Transparency; Kd=Vertical Attenuation of Light

Remote sensing of water quality

Remote sensing reflectance

\[
R_{rs}(\theta, \varphi, \lambda) = \frac{L_w(\theta, \varphi, \lambda)}{E_d(\lambda)}
\]

Downwelling irradiance, \(E_d(\lambda)\)

Water leaving radiance, \(L_w(\theta, \varphi, \lambda)\)

Trout Lake
Remote sensing of water quality

Absorption and scattering coefficients

Sensitivity of the reflectance to variations in the solar zenith angle

\[R_{rs}(\theta, \varphi, \lambda) = \frac{f(\lambda)}{Q(\lambda)} \frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)} \]

Bidirectional properties of the reflectance

Absorption coefficient

Backscattering coefficient

\[a(\lambda) = a_\varphi(\lambda) + a_{NAP}(\lambda) + a_{CDOM}(\lambda) + a_w(\lambda) \]
Remote sensing of water quality

Landsat 8 spectral bands graph from http://landsat.gsfc.nasa.gov
Systematic processing of satellite data for water clarity

2013 water clarity estimation

- 54 satellite images
- 3992 ground truth measurements
- 32 data processing steps
- 9 image mosaics for algorithm development
- 475 ground truth measurements for algorithm development
- 8561 water clarity estimates
- 3788 files
- 0.94 TB of data
Systematic processing of satellite data for water clarity

Image processing steps

- Conversion of data to TOA spectral radiance
- Reprojection of images to WTM
- Removal of cirrus clouds
- Removal of land
- Removal of shallow waters and aquatic vegetation
- Mosaicking
- Extraction of radiance values for CLMN stations with data collected within one week from image acquisition date
Systematic processing of satellite data for water clarity

Algorithm calibration

\[
\ln(SD) = a + b \times \frac{\text{OLI}_{B2}}{\text{OLI}_{B4}} + c \times \text{OLI}_{B2}
\]
2013 preliminary water clarity composite
Systematic processing of satellite data for water clarity
Lakes and Aquatic Invasive Species (AIS) Mapping Tool

http://dnr.wi.gov/lakes/viewer/
Algorithm calibration

\[
\ln(C) = a + b \times \frac{\text{OLI}_{B3}}{\text{OLI}_{B4}} + c \times \text{OLI}_{B2}
\]
2013 preliminary water color product

Average Water Color

Big Saint Germain Lake
- 5.5 PCU
Rainbow Flowage
- 33.0 PCU
Pickerel Lake
- 13.3 PCU
Major drivers of lake water clarity

Focus on

- Explained variance
- Response distributions

Predictor categories

- Climate
- Land use/land cover
- Surficial geology
- Water chemistry
- Lake morphology & position
- Runoff potential

Data courtesy of Kevin Rose, University of Wisconsin-Madison
Major drivers of lake water clarity

What are the implications of long term trends in temperature and precipitation?

Data courtesy of Kevin Rose, University of Wisconsin-Madison
Water clarity is regulated by many different drivers.

<table>
<thead>
<tr>
<th>Predictor category</th>
<th>Predictors (#)</th>
<th>2005 variance explained</th>
<th>2010 variance explained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate</td>
<td>13</td>
<td>30.0</td>
<td>23.1</td>
</tr>
<tr>
<td>Land use/land cover</td>
<td>26</td>
<td>28.5</td>
<td>21.3</td>
</tr>
<tr>
<td>Lake morphometry</td>
<td>4</td>
<td>27.5</td>
<td>23.7</td>
</tr>
<tr>
<td>Run-off potential</td>
<td>5</td>
<td>18.8</td>
<td>11.7</td>
</tr>
<tr>
<td>Catchment morphometry</td>
<td>11</td>
<td>17.9</td>
<td>12.0</td>
</tr>
<tr>
<td>Water chemistry</td>
<td>3</td>
<td>12.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Geology</td>
<td>18</td>
<td>4.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>64.4</td>
<td>52.4</td>
</tr>
</tbody>
</table>

Data courtesy of Kevin Rose, University of Wisconsin-Madison
Major drivers of lake water clarity

Dry year, 2005

Wet year, 2010

Data courtesy of Kevin Rose, University of Wisconsin-Madison
Major drivers of lake water clarity

Regulators of lake water clarity

• Deep lakes high in the landscape tend to be the clearest
• Agricultural land use is the best land use predictor of water clarity
• High precipitation is associated with lower water clarity

Data courtesy of Kevin Rose, University of Wisconsin-Madison
Increase in Earth observation monitoring capabilities

Optical and biogeochemical characterization of lakes

- Field data collection in summer and fall 2014 for algorithm development
- 24 lakes in Wisconsin

Field and laboratory measurements

- Water temperature, dissolved oxygen, conductivity, and Secchi depth
- Reflectance
- Water color and turbidity
- TSS, ISS, and OSS
- Absorption and backscattering coefficients

Return from field data collection at Lake Geneva
Thank you!

D. Gurlin and S. Greb
Wisconsin Department of Natural Resources
2015 Wisconsin Lakes Partnership Convention
April 23-25, 2105
Holiday Inn Convention Center, Stevens Point

LDCM artist’s rendering: NASA/Goddard Space Flight Center Conceptual Image Lab