LAND USE AND WATERSHED IMPACTS

NUISANCE ALGAL BLOOMS

Phosphorus Export Coefficients Wisconsin Values

Early Spring Runoff from Barnyards: A Major Source of Phosphorus Pollution

No Vegetative Buffer along Drainage Ditch

Phosphorus Distribution Dane County - Farm 1

and Pest Management Program

Dane Co. Soil Test P Data 1974-1994

(after Combs et al. 1996 as reported in Bennett et al. 1999)

P Loading Sources to Lake Mendota

WATER AND NUTRIENT BUDGETS

HYDROLOGY

WATER BUDGET

SURFACE WATER

Photo by Paul Garrison

WATER AND NUTRIENT BUDGETS

NUTRIENT BUDGETS

BENTHIVOROUS FISH

SHORELAND DEVELOPMENT

Undeveloped – Apr.-Oct. phosphorus/sediment runoff model

- maple-beech forest
- 6% slope to lake
- sandy loam soil

ON LAKE (April - Oct.)

IMPACT

- 1,000 ft³ runoff to lake
- 0.03 lbs. phos. to lake
- 5 lbs. sediment to lake

Source: Wisconsin Dept. of Natural Resources 1995 John Panuska

1940s development – Apr.-Oct. phosphorus/sediment runoff model

- maple-beech forest
- 6% slope to lake
- grass corridor 20'-wide
- cottage 700 ft² perimeter
- gravel drive 800 ft²
- 35'-wide buffer strip

IMPACT ON LAKE (April - Oct.)

- 1,000 ft³ runoff to lake
- 0.03 lbs. phos. to lake
- 20 lbs. sediment to lake

Source: Wisconsin Dept. of Natural Resources 1995 John Panuska

1990s development – Apr.-Oct. phosphorus/sediment runoff model

