Largemouth Bass in Northern Wisconsin: Factors Regulating Recruitment and Potential Dietary Interactions with Walleyes

> Craig J. Kelling Daniel A. Isermann Shelli A. Dubay Brian L. Sloss Jonathan F. Hansen

Center for Limnology

Largemouth Bass (LMB) Range

Research Problem

In some lakes, apparent increases in LMB abundance have coincided with perceived and documented declines in walleye (WAE) abundance.

WDNR has changed harvest regulations and stocking strategies for WAE and LMB.

Management Program

> Reduction in angler harvest of WAE:

 18" minimum length limit (up from 14"), daily bag reduction from 5 to 3 fish.

> Maintain adequate WAE spawning stock:

 Monitor and stock WAE, subject to budget and hatchery capacity restrictions.

Reduction in LMB populations:
– Remove the current 14" minimum length limit.

Research Questions

- > Why the increase in LMB abundance?
 - Harvest regulations for LMB have generally become more stringent over the last several decades.
 - Most anglers voluntarily release LMB.
 - Climatic patterns may be more conducive to LMB recruitment (i.e., warmer summers, earlier hatch dates).

Climate and Early Life History

What if recent climatic trends allow LMB to hatch earlier and grow faster?

Research Questions

> Why the increase in LMB abundance?

- Harvest regulations for LMB have generally become more stringent over the last several decades.
- Most anglers voluntarily release LMB.
- Climatic patterns may be more conducive to LMB recruitment (i.e., warmer summers, earlier hatch dates).
- What mechanisms could be contributing to interactions between largemouth bass and walleye?
 - Predation
 - Competition

Objectives

Determine if hatch timing influences total length and daily growth rate of age-0 LMB.

Determine if diet overlap and predation occurs between adult WAE and LMB in northern Wisconsin lakes.

Methods Study Area

- > Northern Wisconsin
 - Squaw Lake
 - Big McKenzie Lake
 - Big Sissabagama Lake
 - Muskellunge Lake
 - Minocqua Lake
 - Teal Lake
- Central Wisconsin
 - Pike Lake
 - Sunset Lake
 - Pleasant Lake
- Southern Wisconsin
 - Indian Lake
 - Browns Lake
 - Pleasant Lake

Methods Objective 1 Data Collection

- Age-0 LMB were collected periodically during May-October 2012-2013.
- Age-0 LMB were collected with 40-ft mesh beach seine at randomly selected sites.
- > Age-0 LMB are measured (mm) and weighed (0.01g).

Methods Objective 1 Data Collection

- Sagittal otoliths were removed and secured to a glass slide
- Each otolith was polished using wetted 2,000-grit sandpaper.
- Digital images of otoliths were projected onto a monitor using a compound microscope equipped with a digital camera.

Lake Minocqua 9/18/2011 58 mm

Daily Rings (Yellow Arrows)

Methods Hatch Date

- > Hatch Date
 - Daily rings of LMB are generally not discernible until swim-up, which occurs approximately 7 days after hatching.

Hatch date =
$$d_c - (DRC + 7d)$$

- $d_c =$ Day of capture
- DRC = Average daily ring count

Methods Growth Rate

- > Daily Growth Rate
 - The total length of LMB is approximately 6 mm at swim-up.

$$DGR = \frac{TL_c - 6 mm}{DRC}$$

- DGR = Daily growth rate
- $-TL_c$ = Total length at capture
- DRC = Average daily ring count

Methods Objective 1 Data Analysis

Influence of hatch timing on total length and growth rate of age-0 LMB.

> Linear regression in the form of:

Total Length = a + b(Hatch Date)

Growth Rate = a + b(Hatch Date)

Methods Objective 2 Data Collection

- Adult LMB and WAE were collected at two week intervals during May-October 2012.
- AC boat electrofishing was used at randomly selected sites.
- Diet items were removed by gastric lavage.
 - Big Sissabagama Lake
 - LMB (n=289) WAE (n=76)
 - Teal Lake
 - LMB (n=120) WAE (n=153)

Methods Objective 2 Data Collection

- All diet items were identified to order for invertebrates and to genus for identifiable fish.
- Prey items in each sample were separated into individual taxonomic groups, enumerated, and wet weighed to the nearest 0.01 g.

Methods Objective 2 Data Collection

- > DNA Barcoding:
 - Whole genomic DNA extracted.
 - Cytochrome oxidase I gene amplified and sequenced.
 - Query national database (NCBI nr database) to determine the likely source species.

Methods Diet Overlap

- > Diet overlap:
 - Diets of LMB and WAE were summarized as an average proportion by wet weight.
 - Pianka's index of niche overlap.

$$O_{ij} = \frac{\sum_{i}^{n} p_{ij} p_{ik}}{\sqrt{\sum_{i}^{n} (p_{ij})^2 \sum_{i}^{n} (p_{ik})^2}}$$

- p_{ij} = Proportion of diet item *i* in LMB
- p_{ik} = Proportion of diet item *i* in WAE

Results

Diet Overlap Big Sissabagama Lake

Results Diet Overlap Teal Lake

Management Implications

- If LMB abundance is largely determined by environmental variables:
 - Changes to harvest regulations and stocking strategies may not reduce LMB abundance.
- > If LMB negatively interact with WAE:
 - Walleye stocking strategies may need adjustment in order to reflect their relationship with LMB.
- New options for management would be available:
 Removal of bass may be a viable option.

