## Largemouth Bass in Northern Wisconsin: Factors Regulating Recruitment and Potential Dietary Interactions with Walleyes

Craig J. Kelling
Daniel A. Isermann
Shelli A. Dubay
Brian L. Sloss
Jonathan F. Hansen


## Largemouth Bass (LMB) Range



## Research Problem

> In some lakes, apparent increases in LMB abundance have coincided with perceived and documented declines in walleye (WAE) abundance.
> WDNR has changed harvest regulations and stocking strategies for WAE and LMB.

## Management Program

$>$ Reduction in angler harvest of WAE:

- 18" minimum length limit (up from 14"), daily bag reduction from 5 to 3 fish.
$>$ Maintain adequate WAE spawning stock:
- Monitor and stock WAE, subject to budget and hatchery capacity restrictions.
$>$ Reduction in LMB populations:
- Remove the current 14" minimum length limit.


## Research Questions

$>$ Why the increase in LMB abundance?

- Harvest regulations for LMB have generally become more stringent over the last several decades.
- Most anglers voluntarily release LMB.
- Climatic patterns may be more conducive to LMB recruitment (i.e., warmer summers, earlier hatch dates).


## Climate and Early Life History

$>$ What if recent climatic trends allow LMB to hatch earlier and grow faster?


## Research Questions

$>$ Why the increase in LMB abundance?

- Harvest regulations for LMB have generally become more stringent over the last several decades.
- Most anglers voluntarily release LMB.
- Climatic patterns may be more conducive to LMB recruitment (i.e., warmer summers, earlier hatch dates).
$>$ What mechanisms could be contributing to interactions between largemouth bass and walleye?
- Predation
- Competition


## Objectives

$>$ Determine if hatch timing influences total length and daily growth rate of age-0 LMB.
$>$ Determine if diet overlap and predation occurs between adult WAE and LMB in northern Wisconsin lakes.


## Methods

## Study Area

$>$ Northern Wisconsin

- Squaw Lake
- Big McKenzie Lake
- Big Sissabagama Lake
- Muskellunge Lake
- Minocqua Lake
- Teal Lake
$>$ Central Wisconsin
- Pike Lake
- Sunset Lake
- Pleasant Lake
> Southern Wisconsin
- Indian Lake
- Browns Lake
- Pleasant Lake



## Methods <br> Objective 1 Data Collection

> Age-0 LMB were collected periodically during MayOctober 2012-2013.
$>$ Age-0 LMB were collected with 40-ft mesh beach seine at randomly selected sites.
$>$ Age-0 LMB are measured (mm) and weighed (0.01g).


## Methods Objective 1 Data Collection

> Sagittal otoliths were removed and secured to a glass slide
> Each otolith was polished using wetted 2,000-grit sandpaper.
> Digital images of otoliths were projected onto a monitor using a compound microscope equipped with a digital camera.


## Methods

## Hatch Date

$>$ Hatch Date

- Daily rings of LMB are generally not discernible until swim-up, which occurs approximately 7 days after hatching.

$$
\text { Hatch date }=d_{c}-(D R C+7 d)
$$

$-d_{c}=$ Day of capture

- DRC = Average daily ring count



## Methods

## Growth Rate

> Daily Growth Rate

- The total length of LMB is approximately 6 mm at swim-up.

$$
D G R=\frac{T L_{c}-6 m m}{D R C}
$$

- DGR = Daily growth rate
$-T L_{c}=$ Total length at capture
- DRC = Average daily ring count



## Methods

## Objective 1 Data Analysis

$>$ Influence of hatch timing on total length and growth rate of age-0 LMB.
$>$ Linear regression in the form of:

$$
\begin{aligned}
& \text { Total Length }=a+b(\text { Hatch Date }) \\
& \text { Growth Rate }=a+b(\text { Hatch Date })
\end{aligned}
$$

## Big McKenzie Lake 2011



## Big McKenzie Lake 2011



## Methods

## Objective 2 Data Collection

$>$ Adult LMB and WAE were collected at two week intervals during May-October 2012.
> AC boat electrofishing was used at randomly selected sites.

$>$ Diet items were removed by gastric lavage.

- Big Sissabagama Lake
- LMB ( $\mathrm{n}=289$ ) WAE ( $\mathrm{n}=76$ )
- Teal Lake
- LMB (n=120) WAE (n=153)



## Methods <br> Objective 2 Data Collection

$>$ All diet items were identified to order for invertebrates and to genus for identifiable fish.
> Prey items in each sample were separated into individual taxonomic groups, enumerated, and wet weighed to the nearest 0.01 g .




## Methods <br> Objective 2 Data Collection

> DNA Barcoding:

- Whole genomic DNA extracted.
- Cytochrome oxidase I gene amplified and sequenced.
- Query national database (NCBI nr database) to determine the likely source species.



## Methods

## Diet Overlap

$>$ Diet overlap:

- Diets of LMB and WAE were summarized as an average proportion by wet weight.
- Pianka's index of niche overlap.

$$
\boldsymbol{o}_{i j}=\frac{\sum_{i}^{n} p_{i j} p_{i k}}{\sqrt{\sum_{i}^{n}\left(\boldsymbol{p}_{i j}\right)^{2} \sum_{i}^{n}\left(\boldsymbol{p}_{i k}\right)^{2}}}
$$

$-p_{i j}=$ Proportion of diet item $i$ in LMB

- $p_{i k}=$ Proportion of diet item $i$ in WAE


## Results

Diet Overlap Big Sissabagama Lake


Results
Diet Overlap Teal Lake


## Management Implications

$>$ If LMB abundance is largely determined by environmental variables:

- Changes to harvest regulations and stocking strategies may not reduce LMB abundance.
$>$ If LMB negatively interact with WAE:
- Walleye stocking strategies may need adjustment in order to reflect their relationship with LMB.
> New options for management would be available:
- Removal of bass may be a viable option.


