Adding Lake Levels to the Citizen Lake Monitoring Network

Adding Lake Levels to the Citizen Lake Monitoring Network

Outline

Speaking for Lakes 2011 Wiscomin Lakes Convention April 15-14 Green Bay, WI

- Why Water Level Matters
- Adapting to Changes in Water Level
- How to Monitor Lake Levels
- BREAK
- How to Monitor Lake Levels (cont)
- Citizen Lake Monitoring Network Plan

Why Water Level Matters

Dale Robertson, Paul Juckem, and Tim Asplund

Bass Patterson Lake, Washburn County (E. Cook)

Twin Lake, Marquette County

R. Lathrop

Fallison Lake, Vilas County

High water can cause problems getting into the lake

A State State State

High water can cause problems enjoying being around the lake

High water can cause extreme problems

Many factors affect water levels

- Natural variability Short-term drought and flood cycles
- Landscape position and lake type
- Human actions (water withdrawals, land management)
- Climate change (trends)

Many factors affect water levels

- Natural variability Short-term drought and flood cycles
- Landscape position and lake type
- Human actions (water withdrawals, land management)
- Climate change (trends)

Lake Water Levels

Water levels vary naturally

USGS Circular 1186

Source: USGS Circular 1186

Many factors affect water levels

- Natural variability Short-term drought and flood cycles
- Landscape position and lake type
- Human actions (water withdrawals, land management)
- Climate change (trends)

Landscape Position

Magnuson et al. 2006

Response is Dependent on Lake Type

Magnuson et al. 2006

Many factors affect water levels

- Natural variability Short term drought and flood cycles
- Landscape position and lake type
- Human actions (water withdrawals, land management)
- Climate change (trends)

Human water & land uses affect levels

- Groundwater withdrawal
- Pumping of lake water
- Land management

Human water & land uses affect levels

Many factors affect water levels

- Natural variability Short term drought and flood cycles
- Landscape position and lake type
- Human actions (water withdrawals, land management)
- Climate change (trends)

⁶⁶ Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global mean sea level. ^{??}

IPCC, 2007

Variations of the Earth's surface temperature for ...

Projected Change in Precipitation from 1980 to 2055

Change in Annual Average (inches)

Probability Distributions of 14 Climate Model Projections by Month

Models predict winter and early spring will be wetter (0-40% increase).

Models uncertain about amount of summer rainfall

Source: Adapted from D. Vimont, UW-Madison

Changes in Groundwater Levels: Driven by changes in climate, pumping, or land use

Wisconsin's Migrating Climate

What does the future hold for Wisconsin?

Which one is in the future?

Not really sure could be either or both, so we should prepare for either

Implications of water level fluctuations

- Navigation
- Water availability and eco-hydrologic needs (competing demands)
- Financial and health concerns
- Water quality/clarity changes

High water causes problems with erosion and increases in nutrient inputs

How does changes in water level affect water quality and lake productivity?

Effects of Changes in Hydrology and Water Level on Lake Productivity, with Implications to What May Occur with Climate Change

Dale Robertson, Bill Rose, and Paul Juckem

Study Sites – Two Deep Relatively Pristine Lakes

Whitefish Lake

Silver Lake

Whitefish Lake

Silver Lake

Measured Changes in Lake Water Quality

Do these lakes respond to changes in nutrient loading the way we think they should?

Phosphorus = Conc

Z (1.62 (L/Z)^{0.458} + 1/ τ)

Where: L = P loading Z = Mean Depth τ = Residence Time

Canfield & Bachman Natural Lake Model (1981)

Detailed Hydrologic Budgets

Detailed Phosphorus Budgets

Changes in Hydrology and Phosphorus Loading

Whitefish Lake

Silver Lake

Application of the Eutrophication Model

Phosphorus = Conc

Z (1.62 (L/Z)^{0.458} + 1/ τ)

Where: L = P loading Z = Mean Depth $\tau = Residence Time$

Canfield & Bachman Natural Lake Model (1981)

Whitefish Lake – Seepage Lake

Phosphorus Response from Canfield & Bachman (1981) Natural Lake Model

Silver Lake – Terminal Lake

Phosphorus Response from Canfield & Bachman (1981) Natural Lake Model

Whitefish Lake – Seepage Lake

Silver Lake – Terminal Lake

Chlorophyll a and Secchi Depth Response from Carlson (1977) Trophic State Response

Silver Lake

How has Whitefish Lake changed through time?

Whitefish Lake – Seepage Lake

Estimated from measured water levels in Whitefish Lake (2004 to 2007), water levels in Bluegill Lake (1986 to 2003), nearby measured precipitation (1900 to 1985). But what about Shallow Lakes? – Should they behave differently from deep lakes?

1. Changes in depth can lead to changes in stratification and changes in internal phos. release > changes in phos. conc.

Internal Phosphorus Loading in Deep Stratified Lakes

Internal Phosphorus Loading in Shallow Lakes

Internal Phosphorus Loading in Shallow Lakes

Water Level may directly effect stratification and phosphorus release

Deep Lakes – Internal phosphorus release but may not mix upward Shallower Lakes – Less stratification and potentially more phosphorus release Very shallow lakes – may not stratify and have little phosphorus release

Why would shallow lakes behave differently from deep lakes?

1. Changes in depth can lead to changes in stratification and changes in internal phos. release > changes in phos. conc.

2. Changes in depth may lead to more of relative change in volume > larger changes in phos. concentrations.

3. Changes in depth may lead to larger changes in littoral areas > larger changes in lake ecology > changes in productivity.

Changes in water level may affect macrophyte growth

F. Koshere

Tomahawk Lake, Bayfield County

Conclusions

Changes in meteorology > changes in the water level of lakes - much larger changes in lakes without outlets

Changes in water level, phosphorus input > changes in phosphorus and chlorophyll a concentrations, and clarity in deep lakes

Climate Change may affect future water levels in lakes and their water quality

- Changes are expected to be largest in lakes with large fluctuations in hydrological input

How do changes in hydrology and water level affect shallow lakes? - Study on Shell Lake and potentially Anvil Lake

Information Needed with respect to Changes in Water Level:

- 1. A better understanding of how the water quality of shallow lakes respond to changes in hydrology and water level.
- 2. Approaches to adapt to changes in water level.
- 3. Documentation of changes in water levels in lakes across the State.