

Mark R Doudlah, President Agrecol LLC Madison WI

Landscape Sustainability

Infiltrate Storm water and Trap Pollutants

The Urban Hydrology Cycle

Large amounts of water run off of parking lots, streets and sidewalks, carrying harmful pollutants to area lakes and streams. Rain Gardens are natural water quality systems – collecting runoff, filtering out pollutants and helping protect our lakes and streams. They allow about 30% more water to soak into the ground.

Six Mile Creek Phosphorous and Sediment Loading

Important ecological functions

- Help clarity by holding sediment in place.
- Take up nutrients that would be used by algae.
- Shelter for wildlife.
- Wildlife food and nesting areas.
- Can help reduce erosion and runoff.
- Spawning beds in sedges /emergent plants for fish.

80-90% of all lake life is born, raised and fed in the area where land and water meet.

Native plants...

- Have deeper roots that stabilize & reinforce soil living Geogrid
- Lessen raindrop impact & erosion
- Stay upright in runoff to filter sediment
- Increase Infiltration and Percolation
- Provide food & shelter for wildlife

Root Systems of Prairie Plants

The fundamental basis for encouraging use of native plant species for improved soil erosion control in streams and stormwater facilities lies in the fact that native plants have extensive root systems which improve the ability of the soil to infiltrate water and withstand wet or erosive conditions. Native plant species, like those listed in this Guide, often have greater biomass <u>below</u> the surface. In this illustration, note the Kentucky Bluegrass shown on the far left, which, when compared to native grass and forb species, exhibits a shallow root system. *Illustration provided by Heidi Natura of the Conservation Research institute*.

15 Kentucky Blue Grass Poa pratensis	Lead Plant Amorpha canescens	Missouri Goldenrod Solidago missouriensis	Indian Grass Sorghastrum mutans	(Compass Plant Süphium laciniatum	Porcupine Grass Stipa spartea	Heath Aster Aster ericoides	Prairie Cord Grass Spartina pectinata	Big Blue Stem Andropogon gerardii	Pale Purple Coneflower Echinacea pallida	Prairie Dropseed Sporobolus heterolepis	Side Oats Gramma Bouteloua curtipendula	False Boneset Kuhnia eupatorioides	Switch Grass Panicum virgatum	White Wild Indigo Baptisia Ieucantha	Little Blue Stem Andropogon scoparius	Rosin Weed Silphium perfoliatum	Purple Prairle Clover Petalostemum purpureum	Juse Grass Koeleria cristata	Cylindric Blazing Star Liatris cylindracea	Buffalo Grass Buchloe doctyloides
\sim			E	-		-														

It's all about native vegetation!

- Natural Selection 10,000+Yrs
- Hardy to your area
- Deep root system
- Reinforcement, Anchorage & Matting
- Perennial
- Absorb Rain Drop Impact
- Infiltration/Percolation
- Root Microbes Clean Water
- Low Maintenance
- Habitat Restoration
- Aesthetic Beauty

Native Root Facts

- 1/3 die each year creating long channels to transport water, oxygen and microbes.
- They cycle minerals from deep in the soil to the top horizons.
- They both allow water infiltration from the surface to deep depths and they mine that same water during dry periods.
- Their root films provide habitat for microbes that are excellent at purifying recharge groundwater.

Agrecol Basic Statistics

Started Native Plant and Seed Production '95 Increased to 1,100 acres on area farms. Produce 3.5 million greenhouse plants yearly 200 species on 350 production beds Produce 100,000 lbs of pure live seed Envirolok[™] vegetative green wall system '05 Envirolok[™] Distributors throughout N.A. Consulting, Installation and Restoration

Agrecol is a primary producer of native seed and plants

Local Native Seed Production

Agrecol's Core-Native Seeds and Plants

Native Nursery Fields

Native PLS Seed

Live Native Plants

Conservation Installs & Maintenance

Harvesting and Cleaning Prairie Seed

Applied Ecology

Infiltration Swale

Tall-Grass Conservation Meadow

Rainwater Garden

Rain Gardens

The Urban Hydrology Cycle

Large amounts of water run off of parking lots, streets and sidewalks, carrying harmful pollutants to area lakes and streams. Rain Gardens are natural water quality systems – collecting runoff, filtering out pollutants and helping protect our lakes and streams. They allow about 30% more water to soak into the ground.

Warner Park Existing Infiltration Basin June 2005

©2006 Agrecol (

©2006 Agrecol Corporation

Warner Park Infiltration Basin August 2006

Warner Park Rain Garden

Deerfield School Prairie Restoration

Wetland Restoration

Cogen Retention Basin

Storm Water Swale

Sustainable - Long Term Solution

When Natives are not enough in our

flashy artificial man made environment

Erosion Control Devices

□ Prairie Sod

□ Green Walls

Concentrated Flow Areas

Wisconsin DOT Product Acceptability List Page 32

Facilities Development Manual

CHANNEL EROSION CONTROL MATRIX

Procedure 10-5-35

(Concentrated Flow Application)

	s.F.	DITCH GRADE															
TYPE OF EROSION	SSIE	< 2%			2% - 4%			4% - 6%			6	6% - 9% *			% - 12%	*	
CONTROL DEVICE		Max. Length (ft.)		Max. Length (h (ft.)	Max	Max. Length (ft.)		Max	Max. Length (ft.)		Max	Max. Length (ft.			
	문풍	300	600	1200	300	600	1200	300	600	1200	300	600	1200	300	600	1200	REMARKS
Seed with properly anchored mulch	0.6			•													Anchor mulch per specifications.
Sod ditch checks with seed and mulch	N/A					с											Install one ditch check for every 1 foot of drop. Sod stakes required.
Temporary ditch checks (hay bales or approved manufactured alternatives lisited in the WisDOT PAL)																	Install one ditch check for every 2 feet of drop. Maximum 200' spacing. Not recommended for slopes less than 1%.
Sod ditch liner	1.0																Upstream end must be buried. Additional sod stakes required.
Double netted light duty (WisDOT Class I Type B) erosion mat	1.5																Only mat type products allowed.
Sod reinforced with a double netted jute (WisDOT Class II Type A) erosion mat	1.5																Upstream end must be buried. Additional sod stakes required. Two bid items needed.
Stone or rock ditch checks, or Rock- Filled Filter Bags	N/A										•						Use No. 2 coarse aggregate, railroad ballast, or breaker run. Install one ditch check for every 2 feet of drop. Use in conjunction with a channel lining.
Medium duty coconut erosion mat (WisDOT Class II Type B or C)	2.0									(<u>?</u>)							
Heavy duty synthetic (WisDOT Class III Type A) erosion mat or turf reinforcement mat (WisDOT Class III Type B)	2.0																Germination may be a problem with Class III Type A mats. An ECRM is required for initial erosion protection for Class III Type B mats.
Heavy duty synthetic turf reinforcement (WisDOT Class III Type C) mat	3.5																An ECRM is required for initial erosion protection. Contact manufacturer if higher shears are needed.
Riprap ditch checks	N/A															•	Place top of downstream ditch check level with bottom of upstream ditch check. Use in conjunction with a channel lining.
Heavy duty synthetic turf reinforcement (Class III Type D) mat	5																An ECRM is required for initial erosion protection. Contact manufacturer if higher shears are needed.
Light riprap	4	-			-							 -					Outfalling, overtopping and scour need to be
Medium riprap	5			-													addressed. Use 2' minimum ditch depth.
Heavy riprap	8	-		-						-						-	
			Ripra	ap mea	sures a	oply to a	all ditch	types.	Use of	these m	easure	require	s engin	eering j	udgeme	ent and	design.

Prairie Sod

Prairie Sod Cut to Order

Prairie Sod Install Nearly Complete

Prairie Sod Days after Installation

Green vegetated walls are strong, environmentallyfriendly, and create beautiful, permanent natural landscapes with native plants

Encapsulated Green Wall Solutions

- Decorative Vegetated Walls, fences and signs
- Stream Bank Corridors
- Estuary protection
- Shoreline & Beach Stabilization
- Steepened slope Protection
- Culvert protection
- Vegetated Ditch Check Dams
- Rain water garden perimeter
- □ Weir Structures for rain water gardens
- □ Anywhere that can be vegetated or UV protected
- Limited only by your imagination

Stream bank Stabilization

Troutdale, Oregon

Shoreline Walls

Residential Lakeshore

Flashy Storm Water

Steep Walls

Weir Structure - Rain Water Garden

Rainwater Gardens

Shoreline Stabilization

Landscape Enhancements

Decorative water feature

Green Wall Components

Spike

Bag Life - 7 to 50+ Years

Ultra Violet Radiation

Unprotected Bag life is 7 years

Protected Bag life is up to 200 years

It's all about native vegetation!

Natural Selection for 10,000 + yearsHardy to your area □ Deep root system Perennial □ Low Maintenance Habitat Restoration □ Aesthetic Beauty

The roots grow through the Green wall bags

60%* Coarse granular sand
40% High grade compost

• *by volume and is site specific

Medium must be free from debris, live rhizomes, and petrochemicals

When constructed to manufacturer's specifications, the wall grows into a solid, monolithic structure

The ecologically-advanced Green Wall System provides permanent erosion control.

The system grows stronger with time.

Site Evaluation

Un-reinforced Shoreline Wall

Reinforced Shoreline wall

Installation Sequence

Green Wall Installation Equipment

One: Build the Wall

Species Selection Criteria

- Perennial Native Species Preferred
- Aggressive and structurally sound root system
- Thrive in engineered bag media
- Will thrive in local climate (local ecotype)
- Fast establishment
- Long term stability
- Biodiversity and Appearance

Two: Plant the wall

Hydroseeding

Shorelines

Tenney Park

Day 16

Day 64

Central Florida University

Chicago River IL

TE SCOTTER TO SCOTT

Viel can

Vegetated Retaining Walls from Agrecol®

1001

11.08

Lake Osakis MN

Mass Wasting of River Bank in Midwest

River in Midwest during install

Sunmark Environmental - Holden

Fish Passage Restoration:

Problem - Fish migration populations have been reduced due to current culvert/bridge passage designs. Fish do not like to pass through darkened areas and artificial structures caused from culverts. It is also difficult and expensive to replace these passage systems.

Poor Fish Passage System

Poor Fish Passage System

Solution - Sunmark has developed a new fish passage system called the **FishWay Rx**TM. Solid deck and/or damaged culverts/bridges are replaced with engineered, modular components that do not hinder the fish from passing through.

Sunmark Environmental Services, LLC 2255 NE 194th Ave. Portland OR 97230 * Phone: 503-241-7333 * Fax 503-491-0279 * www.sunmarkenvironmental.com

The **FishWay Rx[™]** system uses Agrecol's Envirolok[™] structural vegetated wall consisting of geosynthetic bags filled with engineered growing media to create a structural wall and control erosion. This wall is locked into place with geosynthetic strapping, anchor spikes and completed with native vegetation that provides a natural habitat for fish migration.

Behind the wall pre-cast concrete footings are placed to support a mesh faced deck, or grate type crossing that serves as the bridge. These grates meet AASHTO load ratings from 12-30 tons per axle depending on the grate used. They also meet the specifications established by state and federal agencies including DOT, BLM, USFS, NP, and US Military installations. Due to the screen-like construction of the bridge deck, sunlight can penetrate to the water level supporting both plant and fish life. A secondary benefit to the cattle grate crossing is to prevent free-range animals from crossing into undesired territories.

Sunmark Environmental Services, LLC 2255 NE 194th Ave. Portland OR 97230 * Phone: 503-241-7333 * Fax 503-491-0279 * www.sunmarkenvironmental.com

Toe Protection

Versa-Lok – Patio Town

Golf Course Drainage Ditch Before Restoration

VIrolok[®] Vegeta

©2007 Dixon Shoreline & Lands

Low Energy Shorelines

Starkweather Creek WI

©2007 Agrecol Corporation ©2007 Agree

Raised Garden Growth

25

- 1. Natural shoreline great wildlife habitat.
- 2. Small floating dock --- low impact on "ribbon of life."
- 3. Septic system far from the shore --- reduces water pollution.
- 4. Narrow, gravelled footpath --- less chance of erosion.
- Trimmed trees and adjustable awnings natural air conditioning with view maintained.
- 6. You work less relax more!
- 7. Kitchen compost --- improves your soil's quality.
- 8. Low-maintenance native plants provide shoreline buffer.
- 9. Building --- set back from shore and in character with setting.
- Well-maintained motor electric, or modern 4-stroke outboard, operated with low wake near shore.

- Bare shoreline --- subject to erosion.
- 2. Solid dock destroys wildlife habitat, alters currents, causes erosion elsewhere.
- Fertilizer spills and chemical run-off from lawn damage water quality.
- . Paved lane pollution-laden runoff flows to water.
- 5. No shade trees overworked air conditioner adds to electric bill.
- Removal of natural vegetation more work for you and more runoff.
- Collecting lawn clippings deprives soil of nutrients.
- 8. Ornamental shrubs --- require chemicals and extra work.
- 9. Poor fuel management spills are deadly.
- Hardened shoreline eliminates "natural filter," degrades water quality, and blocks wildlife access.

Vegetated Retaining W: The Wisconsin Lakes Partnership

Agrecol Installation Specifications

www.agrecol.com ecosolutions@agrecol.com

