Climate Change: Effects of Extreme Rain Events and Human Health

Sandra McLellan
School of Freshwater Sciences
University of Wisconsin-Milwaukee

School of Freshwater Sciences@ Great Lakes WATER Institute University of Wisconsin-Milwaukee

Today's talk

Waterborne disease and indicators of fecal pollution

Fecal pollution in Lake Michigan: Sources and distribution

Climate change influences on sources of waterborne pathogens

Today's talk

Waterborne disease and indicators of fecal pollution

Fecal pollution in Lake Michigan: Sources and distribution

Climate change influences on sources of waterborne pathogens

Waterborne disease

Sources of fecal pollution:

Agricultural runoff
Sewage discharges
Urban stormwater (non-point source runoff)
Wildlife

US: recreational waters and drinking water a concern Outbreaks/illness (under-reported) Estimates: 12% of gastroenteritis

Milwaukee Cryptosporidium outbreak – largest in US history, 400,000 exposed

Waterborne disease

RECORD RAINFALL AND FLOW IN THE MILWAUKEE RIVER

Waterborne disease

Sources of fecal pollution:

Agricultural runoff Sewage discharges

Urban stormwater (non-point source runoff) Wildlife

Urban: sewage contamination

Rural: agricultural runoff

Smaller communities and vacation areas: septic failures

So what is the source to this lake?

So what is the source to this lake?

E. coli an indicator of human health risk?

EPA recommended indicator of fecal pollution

Present in almost all animals and easily detectable

PROBLEMS

Does not differentiate the source, animal vs. human

Human sources = human pathogens

Animal sources may also be a concern: *E. coli* O157:H7, Salmonella spp.

Other animals: birds, deer, etc.

E. coli can survive/grow in the environment

Fecal Pollution contains a complex mixture of organisms

E. coli

Klebsiella pneumoniae Enterobacter cloaceae

Gram positive

enterococci

Anaerobes *Bacteroides* spp.

Prevotella spp.
Clostridium perfringens
Actinobacteria
Clostridiales

Pathogens
Salmonella
human viruses
Cryptosporidium

Sewage organisms 10⁹ cells per ml

Sewage organisms 10⁹ cells per ml

Sewage organisms 10⁹ cells per ml

Illumina sequencing

Sequencing Sewage

>30,000 reads per sample n=38 800 different taxa 20,000 different sequences

80% environmental origin

20% faecal origin

Acinetobacter Aeromonas Pseudomonas

Arcobacter Betaproteobacteria

sewage

McLellan et al. 2010

Today's talk

Waterborne disease and indicators of fecal pollution

Fecal pollution in Lake Michigan: Sources and distribution

Climate change influences on sources of waterborne pathogens

Great Lakes - 20% of Earth's freshwater

Drinking water source to 40M 500 beaches

Fecal pollution with pathogens enters from the watershed

850 square miles drain to Milwaukee Harbor Sewage, Agricultural runoff, Stormwater

Failing sewer infrastructure: Introduces sewage every time it rains

All major cities have problems:

30% of sewage DOES NOT make it to the WWTP

Rainfall Urban stormwater Sewage overflow

E. coli CFU/100 ml

- 0-100
- 100-235
- 235-999
- 1000-9999
- 10,000-20,000

Bradford and South Shore Beach on Lake Michigan

Profiles of alternative indicators across transects into Lake Michigan

Survey stations into Lakes Michigan

Atwater Beach

Rainfall Urban stormwater No sewage overflow

E. coli CFU/100 ml

- 100-235
- 235-999
- 1000-9999
- 10,000-20,000

Bradford and South Shore Beach on Lake Michigan

Localized sources at beaches

 Stormwater outfalls at beaches show evidence of sewage contamination

Atwater outfall 2

Today's talk

Waterborne disease and indicators of fecal pollution

Fecal pollution in Lake Michigan: Sources and distribution

Climate change influences on sources of waterborne pathogens

How will our climate change?

Source: David Lorenz, Nelson Institute Center for Climatic Research, University of Wisconsin-Madison

Increases of rainfall frequency and intensities projected for the Great Lakes

Intense rainfall or extreme rainfall inundates urban wastewater infrastructure and drives runoff

http://www.wicci.wisc.edu/climate-change.php

http://www.wicci.wisc.edu/climate-change.php

Spring rainfall sensitive parameter

overflows that have occurred with less than 2 inches of rain occur in spring

Month of overflows

Global climate models and uncertainty

 Changes for some climate parameters are uncertain, e.g. average annual rainfall

Models all agree:
more rain in
winter and spring

How do we link climate projections to estimates of pathogens burdens?

Current climate conditions 1940-2004

Run modeling of the sewer system MACRO

15 million dollar effort

Southeastern Wisconsin Regional Planning Commission

Evaluate system capacity
What is the threshold for CSOs?
When do they occur? Statistics

Answers the question, how do we need to improve the system in the next 20 years?

How do we link climate projections to estimates of pathogens burdens?

Current climate conditions 1940-2004

Run modeling of the sewer system MACRO

Evaluate system capacity
What is the threshold for CSOs?
When do they occur? Statistics

Climate projections: use downscaled climate models

Run modeling of the sewer system MACRO

Evaluate CHANGE
How many more CSOs?
When do they occur? Statistics

What's next

How will climate change other sources of pathogens leaking sewers, direct runoff from farms, leaking septic?

How does temperature alter runoff (less runoff?)

Examine adaptation strategies targeting spring timeframe

School of Freshwater Sciences @ the Great Lakes WATER Institute

Visiting Professor Ryan

Newton

Postdocs

Jen Fisher

Graduate students

Amber Koskey
Danielle Cloutier
Chelsea Corson
Hayley Templer

Undergraduates

Morgan Schroeder Katie Halmo

Nick Myers

Research Specialists

Deb Dila Pat Bower

Melinda Bootsma

Collaborators

Mitch Sogin Marin Biological Laboratory

Michael Hahn Southeastern Wisconsin Regional Planning Commission

David Bennett Brown and Caldwell

David Lorenz UW-Madison, Center for Climate Research

Steve Corsi- USGS

Istvan Lauko UW-Milwaukee, Mathematical Sciences

Gabriella Pinter

Funding

NIH NIAID and NIEHS

MMSD

NOAA

University of Wisconsin

Sea Grant

CDC